Example — 10 Top Tips trial
| 2 |
1 |
F |
66 |
1 |
21 |
0.088 |
0.848 |
0.689 |
0.088 |
0.691 |
0.587 |
4230.04 |
| 3 |
1 |
M |
57 |
1 |
5 |
0.796 |
0.796 |
0.796 |
0.620 |
0.796 |
1.000 |
1584.88 |
| 4 |
1 |
M |
49 |
2 |
5 |
0.725 |
0.727 |
0.796 |
0.848 |
0.796 |
0.291 |
331.27 |
| 12 |
1 |
M |
64 |
2 |
14 |
0.850 |
0.850 |
1.000 |
1.000 |
0.848 |
0.725 |
1034.42 |
| 13 |
1 |
M |
66 |
1 |
9 |
0.848 |
0.848 |
0.848 |
1.000 |
0.848 |
0.725 |
1321.30 |
| 21 |
1 |
M |
64 |
1 |
3 |
0.848 |
1.000 |
1.000 |
1.000 |
0.850 |
1.000 |
520.98 |
- Demographics:
- BMI = Categorised body mas index
- GP = Number of GP visits
- HRQL data
- QoL measurements at baseline, 3, 6, 12, 18 and 24 months
- Costs
- Total costs over the course of the study
(“Standard”) Statistical modelling
- Compute individual QALYs and total costs as
\[\class{myblue}{e_i = \displaystyle\sum_{j=1}^{J} \left(u_{ij}+u_{i\hspace{.5pt}j-1}\right) \frac{\delta_{j}}{2}} \qquad \txt{and} \class{myblue}{\qquad c_i = \sum_{j=0}^J c_{ij}} \qquad \left[\txt{with } \class{myblue}{\delta_j = \frac{\text{Time}_j - \text{Time}_{j-1}}{\txt{Unit of time}}}\right]\]
(“Standard”) Statistical modelling
- Compute individual QALYs and total costs as
\[\class{myblue}{e_i = \displaystyle\sum_{j=1}^{J} \left(u_{ij}+u_{i\hspace{.5pt}j-1}\right) \frac{\delta_{j}}{2}} \qquad \txt{and} \class{myblue}{\qquad c_i = \sum_{j=0}^J c_{ij}} \qquad \left[\txt{with } \class{myblue}{\delta_j = \frac{\text{Time}_j - \text{Time}_{j-1}}{\txt{Unit of time}}}\right]\]
- (Often implicitly) assume normality and linearity and model independently individual QALYs and total costs by controlling for (centered) baseline values, eg \({u^∗_i = (u_i − \bar{u} )}\) and \({c^∗_i = (c_i − \bar{c} )}\)
\[\begin{align}
e_i & = \alpha_{e0} + \alpha_{e1} \text{Trt}_i + \alpha_{e2} u^*_{0i} + \varepsilon_{ei}\, [+ \ldots], \qquad \varepsilon_{ei} \sim \dnorm(0,\sigma_e) \\
c_i & = \alpha_{c0} + \alpha_{c1} \text{Trt}_i + \alpha_{c2} c^*_{0i} + \varepsilon_{ci}\, [+ \ldots], \qquad\hspace{2pt} \varepsilon_{ci} \sim \dnorm(0,\sigma_c)
\end{align}\]
- Estimate population average cost and effectiveness differentials
- Under this model specification, these are \(\class{myblue}{\Delta_e=\alpha_{e1}}\) and \(\class{myblue}{\Delta_c=\alpha_{c1}}\)
- Quantify impact of uncertainty in model parameters on the decision making process
- In a fully frequentist analysis, this is done using resampling methods (eg bootstrap)
Modelling ILD in HTA
Normal/Normal independent model — setup
The “standard” modelling is equivalent to
\[\begin{eqnarray*}
e_i & \sim & \dnorm(\phi_{ei},\sigma_{et}) \\
\phi_{ei} & = & \alpha_0 + \alpha_1 (\text{Trt}_i - 1) + \alpha_2 (u_{0i}-\bar{u}_{0})
\end{eqnarray*}\] and \[\begin{eqnarray*}
c_i & \sim & \dnorm(\phi_{ci},\sigma_{ct}) \\
\phi_{ci} & = & \beta_0 + \beta_1(\text{Trt}_i - 1)
\end{eqnarray*}\] where
- \(\text{Trt}_i,t=1,2\) are the two intervention arm (\(t=1\) indicates the standard of care, while \(t=2\) is the active intervention)
- \(u^*_{0i}=(u_{0i}-\bar{u}_{0})\) is the centred baseline QoL
- Consequently
- \(\mu_{et}=\alpha_0 + \alpha_1 (t-1)\) is the population average benefits
- \(\mu_{ct}=\beta_0 + \beta_1(t-1)\) is the population average costs
Marginal/conditional factorisation model
- In general, can represent the joint distribution as \(\class{myblue}{p(e,c) = p(e)p(c\mid e) = p(c)p(e\mid c)}\)
Marginal/conditional factorisation model
- In general, can represent the joint distribution as \(\class{myblue}{p(e,c) = }\class{blue}{p(e)}\class{myblue}{p(c\mid e) = p(c)p(e\mid c)}\)
\[\begin{eqnarray*}
e_i & \sim & p(e \mid \phi_{ei},\bm\xi_e) \\
g_e(\phi_{ei}) & = & \alpha_0 \, [+\ldots] \\
\mu_e & = & g_e^{-1}(\alpha_0) \\
&& \\
\phi_{ei} & = & \style{font-family:inherit;}{\text{location}} \\
\bm\xi_e & = & \style{font-family:inherit;}{\text{ancillary}}
\end{eqnarray*}\]
Marginal/conditional factorisation model
- In general, can represent the joint distribution as \(\class{myblue}{p(e,c) = }\class{blue}{p(e)}\class{red}{p(c\mid e)}\class{myblue}{ = p(c)p(e\mid c)}\)
\[\begin{eqnarray*}
e_i & \sim & p(e \mid \phi_{ei},\bm\xi_e) \\
g_e(\phi_{ei}) & = & \alpha_0 \, [+\ldots] \\
\mu_e & = & g_e^{-1}(\alpha_0) \\
&& \\
\phi_{ei} & = & \style{font-family:inherit;}{\text{location}} \\
\bm\xi_e & = & \style{font-family:inherit;}{\text{ancillary}}
\end{eqnarray*}\]
\[\begin{eqnarray*}
c_i & \sim & p(c \mid e_i, \phi_{ci},\bm\xi_c) \\
g_c(\phi_{ci}) & = & \beta_0 +\beta_1(e_i - \mu_e) \, [+\ldots] \\
\mu_c & = & g_c^{-1}(\beta_0) \\
&& \\
\phi_{ci} & = & \style{font-family:inherit;}{\text{location}} \\
\bm\xi_c & = & \style{font-family:inherit;}{\text{ancillary}}
\end{eqnarray*}\]
Marginal/conditional factorisation model
- In general, can represent the joint distribution as \(\class{myblue}{p(e,c) = p(e)p(c\mid e) = p(c)p(e\mid c)}\)
\[\begin{eqnarray*}
e_i & \sim & \dnorm(\phi_{ei},\xi_e) \\
\phi_{ei} & = & \alpha_0 \, [+\ldots] \\
\mu_e & = & \alpha_0 \\
&& \\
\phi_{ei} & = & \style{font-family:inherit;}{\text{marginal mean}} \\
\xi_e & = & \style{font-family:inherit;}{\text{marginal sd}} \\
g_e(\cdot) & = & \style{font-family:inherit;}{\text{identity}}
\end{eqnarray*}\]
\[\begin{eqnarray*}
c_i & \sim & \dnorm(\phi_{ci},\xi_c) \\
\phi_{ci} & = & \beta_0 +\beta_1(e_i - \mu_e) \, [+\ldots] \\
\mu_c & = & \beta_0 \\
&& \\
\phi_{ci} & = & \style{font-family:inherit;}{\text{conditional mean}} \\
\xi_c & = & \style{font-family:inherit;}{\text{conditional sd}} \\
g_c(\cdot) & = & \style{font-family:inherit;}{\text{identity}}
\end{eqnarray*}\]
- Normal/Normal MCF — equivalent to
\[\left( \begin{array}{c} \varepsilon_{ei} \\ \varepsilon_{ci}\end{array} \right) \sim \dnorm\left( \left(\begin{array}{c} 0 \\ 0\end{array}\right), \left(\begin{array}{cc} \sigma^2_e & \rho\sigma_e\sigma_c \\ & \sigma^2_c \end{array}\right) \right)\]
- Can also write down analytically the marginal mean and sd for the costs (but that’s not so relevant…)
Marginal/conditional factorisation model
- In general, can represent the joint distribution as \(\class{myblue}{p(e,c) = p(e)p(c\mid e) = p(c)p(e\mid c)}\)
\[\begin{eqnarray*}
e_i & \sim & \dbeta(\phi_{ei}\xi_e,(1-\phi_{ei})\xi_e) \\
\logit(\phi_{ei}) & = & \alpha_0 \, [+\ldots] \\
\mu_e & = & \frac{\exp(\alpha_0)}{1+\exp(\alpha_0)} \\
&& \\
\phi_{ei} & = & \style{font-family:inherit;}{\text{marginal mean}} \\
\xi_e & = & \style{font-family:inherit;}{\text{marginal scale}} \\
g_e(\cdot) & = & \style{font-family:inherit;}{\text{logit}}
\end{eqnarray*}\]
\[\begin{eqnarray*}
c_i & \sim & \dgamma(\xi_c,\xi_c/\phi_{ci}) \\
\log(\phi_{ci}) & = & \beta_0 +\beta_1(e_i - \mu_e) \, [+\ldots] \\
\mu_c & = & \exp(\beta_0) \\
&& \\
\phi_{ci} & = & \style{font-family:inherit;}{\text{conditional mean}} \\
\xi_c & = & \style{font-family:inherit;}{\text{shape}} \\
\xi_c/\phi_{ci} & = & \style{font-family:inherit;}{\text{rate}} \\
g_c(\cdot) & = & \style{font-family:inherit;}{\text{log}}
\end{eqnarray*}\]
- Beta/Gamma MCF
- Effects may be bounded in \([0;1]\) (e.g. QALYs on a one-year horizon)
- Costs are positive and skewed
- …
Marginal/conditional factorisation model
- In general, can represent the joint distribution as \(\class{myblue}{p(e,c) = p(e)p(c\mid e) = p(c)p(e\mid c)}\)
\[\begin{eqnarray*}
e_i & \sim & p(e \mid \phi_{ei},\bm\xi_e) \\
g_e(\phi_{ei}) & = & \alpha_0 \, [+\ldots] \\
\mu_e & = & g_e^{-1}(\alpha_0) \\
&& \\
\phi_{ei} & = & \style{font-family:inherit;}{\text{location}} \\
\bm\xi_e & = & \style{font-family:inherit;}{\text{ancillary}}
\end{eqnarray*}\]
\[\begin{eqnarray*}
c_i & \sim & p(c \mid e_i, \phi_{ci},\bm\xi_c) \\
g_c(\phi_{ci}) & = & \beta_0 +\beta_1(e_i - \mu_e) \, [+\ldots] \\
\mu_c & = & g_c^{-1}(\beta_0) \\
&& \\
\phi_{ci} & = & \style{font-family:inherit;}{\text{location}} \\
\bm\xi_c & = & \style{font-family:inherit;}{\text{ancillary}}
\end{eqnarray*}\]
Combining “modules” and fully characterising uncertainty about deterministic functions of random quantities is relatively straightforward using MCMC
Prior information can help stabilise inference (especially with sparse data!), eg
- Cancer patients are unlikely to survive as long as the general population
- ORs are unlikely to be greater than \(\pm \style{font-family:inherit;}{\text{5}}\)
To be or not to be?… (A Bayesian)
In principle, there’s nothing inherently Bayesian about MCF… BUT: there’s lots of advantages in doing it in a Bayesian setup
- As the model becomes more and more realistic and its structure more and more complex, to account for skeweness and correlation, the computational advantages of using maximum likelihood estimations become increasingly smaller
- Writing and optimising the likelihood function becomes more complex analytically and even numerically and might require the use of simulation althorithms
- Bayesian models generally scale up with minimal changes
- Computation may be more expensive, but the marginal computational cost is in fact diminishing
- Realistic models are usually based on highly non-linear transformations
- from a Bayesian perspective, this does not pose a substantial problem, because once we obtain simulations from the posterior distribution for \(\alpha_0\) and \(\beta_0\), it is possible to simply rescale them to obtain samples from the posterior distribution of \(\mu_e\) and \(\mu_c\)
- This allows us to fully characterise and propagate the uncertainty in the fundamental economic parameters to the rest of the decision analysis with essentially no extra computational cost
- Frequentist/ML approach would resort to resampling methods, such as the bootstrap to effectively produce an approximation to the joint posterior distribution for all the model parameters \(\bm\theta\) and any function thereof
- Prior information can help stabilise inference
- Most often, we do have contextual information to mitigate limited evidence from the data and stabilise the evidence
- Using a Bayesian approach allows us to use this contextual information in a principled way.
N/N independent vs N/N MCF
Normal/Normal independent Normal/Normal MCF
Gamma/Gamma MCF — 10TT
- Define \(e^*_i = (3 -e_i)\)
- Rescale observed QALYs and turns the distribution into right skewed
- Can use a Gamma distribution, accounting for a small number of individuals are associated with negative QALYs, indicating a very poor health state (“worse than death”)
\[\begin{align*}
e^*_{i} \sim \dgamma (\nu_e,\gamma_{ei}) && & \log(\phi_{ei}) = \alpha_0 + \alpha_1(\text{Trt}_i - 1) + \alpha_2 u^*_{0i}\\
c_i\mid e^*_i \sim \dgamma(\nu_c,\gamma_{ci}) && & \log(\phi_{ci}) = \beta_0 + \beta_1(\text{Trt}_i - 1) + \beta_2(e^*_i -\mu^*_e)
\end{align*}\]
- Because of the properties of the Gamma distribution
- \(\phi_{ei}\) indicates the marginal mean for the QALYs,
- \(\nu_e\) is the shape
- \(\gamma_{ei}=\nu_c/\phi_{ei}\) is the rate
- Similarly
- \(\nu_c\) is the shape
- \(\gamma_{ci}=\nu_c/\phi_{ci}\) is the rate of the conditional distribution for the costs given the benefits
- \(\phi_{ci}\) is the conditional mean
N/N independent vs N/N MCF vs G/G MCF
Normal/Normal independent Normal/Normal MCF Gamma/Gamma MCF
10TT — Model selection
| Model |
\(p_V\) |
\(\dic\)a |
\(p_D\) |
\(\dic\)b |
| a Computed as \(p_V+\overline{D(\bm\theta)}\) |
| b Computed as \(p_D+\overline{D(\bm\theta)}\) |
| Normal/Normal independent |
9.64 |
687 |
9.24 |
686 |
| Normal/Normal MCF |
10.16 |
674 |
9.97 |
674 |
| Gamma/Gamma MCF |
12.30 |
492 |
10.47 |
490 |
Both versions of the DIC favour the Gamma/Gamma MCF and suggest the two Normal/Normal models are basically indistinguishible
\(p_V\) for the two Normal/Normal models computed as much larger than for the Gamma/Gamma MCF
\(p_D\) has a nice interpretation as effective number of model parameters — more on this later
Cost-effectiveness model
- Can use the simulations from the three models for \((\mu_e,\mu_c)\) and then run
BCEA to obtain the economic analysis