
Gianluca Baio

Introduction to statistical concepts

18 October, 2022





Preliminaries

What are these notes about and for?

The aim of these notes is not to provide a comprehensive and detailed introduction to all of statistical
theory. Of course, that requires more than just a single document/book and you need to work your way
through the many lectures you will attend during your MSc Programme in Health Economics and Decision
Science. What these notes are meant to provide you with is a critical introduction to the most important
concepts, that you will encounter specifically in STAT0015, STAT0016 and STAT0019. Of course, the last
two modules are not compulsory, so you may not take them. Nevertheless, it is useful to have all these
at hand. Arguably, statistical reasoning and analysis is central to all forms of what can be generically
called “Health Economics” — both in terms of modelling for cost-effectiveness/utility analysis and when
performing econometric modelling. It is then crucial that the concepts described in these notes are clear
to you.

The structure of these notes guides you through the very basics of the philosophy underpinning the ideas
of sampling and data collection. Suitable methods for summary and visualisation of the data are also
presented in Chapter 1. Then Chapter 2 describes several statistical models that are commonly used in
the applications you will encounter. These include Bernoulli and Binomial models to describe sampling
variability in individual or aggregated binary data, Poisson models for counts, Normal distributions for
continuous, symmetric phenomena and more specific distributions (e.g. t, Chi-squared and the Gamma-
family), which are the basis for many of the procedures you will see during your Programme. Of course,
the presentation is far from exhaustive and there are many more models you may be exposed to in specific
modules.

Chapter 3 and Chapter 4 present the central tools of statistical inference — the methods of estimation and
testing. These are presented while highlighting the fundamental distinctions among different approaches
(e.g. Bayesian, Likelihood and Frequentist), which are often confused or conflated (especially the last
two) into an integrated theory, which essentially does not exist. Again, the mathematical sophistication is
kept to a low level — you do not need to read these notes to learn all about the technical issues. The
point is rather to try and help you understand the basic principles and why things work the way they
do, over and above how. Throughout the notes, there are some parts in which it is unavoidable to use
mathematics to make the point; but you are not expected to learn proofs for theorems or anything similar
— only to understand the process.

Finally, Chapter 5 discusses regression analysis, which is a general tool used in many areas of statistical
modelling. Again, we dispense with the most complicated technical details and try to convey the most
important ideas underpinning the development of linear and generalised linear models.
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Computer software

Throughout the notes, we demonstrate some of the computational problems using the freely available
software R, which you can use on UCL machines. You can also download it on to your own machines
from CRAN, i.e. the main repository from which all the relevant “packages”, as well as the main software
is stored. This is available at https://cran.r-project.org/index.html.

Notice that you do not have to learn R when reading or studying these notes. Code and output are typeset
in grey boxes, something like the following.

# Defines a variable
x=4
# Defines a vector
y=c(1,2,3,4)
# Computes a function of a given input
m=mean(y)
# Returns the output
m

[1] 2.5

You are not expected to have learnt it in preparation for the exam you will have to take before starting the
Programme. The code is only presented to help you understand what is actually going on — and you can
use it to replicate some of the analyses presented in the notes. Moreover, note that while attending the
various modules, you will encounter several statistical software, including R, Stata, Matlab and perhaps
others. While having their own different syntax and at times idiosyncrasy, if you learn to use one of these
proper statistical programmes, then you will be able to switch to others — because their common trait is
the possibility of scripting the workflow, using functions and packages.

This, in addition to their advanced computational engines, is what makes them more appropriate than
commonly used spreadsheet calculators, e.g. MS Excel that are often used, particularly in the field of
cost-effectiveness modelling. These are not ideal and have several shortcomings. So, while you will see
them at times in the various modules, you are not encouraged to use them for “real” work — and we will
see several applications of statistical modelling in the more appropriate software in STAT0015, STAT0016
and STAT0019.

Scientific writing (hints for your dissertation)

These notes are written using quarto, which can be used to combine plain text with advanced formatting
and, crucially, R code. In this way, you can annotate and descibe the whole analysis process in a single
file, where you describe all the technical details as well as the general presentation of the problem. This
is something you may consider for your final year dissertation.

Symbols, notation, etc

Although, as mentioned above, we keep the mathematical sophistication to a bare minimum level, we do
need to use specific symbols and terminology, for the sake of clarity. Generally speaking, statistical notation
distinguishes mainly between observed or observable variables, which we indicate in upper-case Roman
letters, e.g. Y , W , T ; and unobservable parameters, which are indicated using Greek letters, e.g. θ, µ, σ.

When data are observed (and thus their realised value is known to us), we usually indicate in lower-case
Roman letters, e.g. y, w, t. When we consider a vector of variables or parameters, we typeset them in bold,

https://cran.r-project.org/index.html
https://quarto.org
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e.g. Y indicates a vector of observable variables. We often describe this fully as Y = (Y1, . . . , Yn), which
can be used to indicate that we have a vector of length n. We apply this to parameters too; for example, if
a model is indexed by two parameters µ and σ, we write that the parameters vector is θ = (µ, σ).

As mentioned above, a crucial part of statistical modelling is to associate variables with probability
distributions, e.g. to describe uncertainty or sampling variability. We do this using the terminology

y ∼ Name of the distribution(Name of the parameters),

where the symbol “∼” is read “is distributed as”, or more appropriately “is associated with a XXX distribution
with parameters YYY”. Alternatively, we may write p(Name of variable | Name of parameters) to indicate
the probability distribution associated with a variable and indexed by some parameters. An example is

p(r | θ, n) =
(
n
r

)
θr(1− θ)(n−r)

(see Section 2.1). The symbol “|” (read “given” or “conditionally on”) is used to indicate that the argument
to its left is the main variable of interest, while the argument(s) to its right are used as parameters or
known values.

The notation Pr(Y = y | θ) indicates the probability that the variable Y takes on the value y — so this is
a slightly different concept to the probability distribution p(y | θ)— the former is a single value, while
the latter is an entire distribution.

When we use sample data to estimate a model parameter, we may use the “hat” notation, e.g. µ̂ (read “µ
hat”) can be used to indicate a function of the data Y that we use to give our best guess as to what the
underlying value for the parameter µ is. This is not universal and some other terminology is possible to
indicate an estimate for a parameter. When these are used, we will define them appropriately in the text.

Occasionally, we use “text blocks” to include specific bits of text and alert you to their importance. These
look something like the following.

( Important

This is a block of text that you should read carefully. This is may be because the content is very
important, or perhaps it is subtle and requires some thinking before you fully understand its
meaning. Or may be it is a technical note, explaining some more advanced details — in which case,
you do not need to learn all these (possibly mathematical) details by heart. As usual, only try and
understand the deeper meaning of the text and maths included in the block.

List of mathematical symbols

• E[Y ]: expected value of a variable Y (see Section 1.5.1). This indicates the mean of a variable and is
often indicated with the symbol µ.

• Var[Y ]: variance of a variable Y (see Section 1.6). This is often indicated with the symbol σ2.

•
n∑
i=1

yi: the sum of n values y1, . . . , yn. Here yi indicates one such generic value and the index i =

1, . . . , n (read: “i goes from 1 to n”).

•
n∏
i=1

yi: the product of n values y1, . . . , yn.

•
∫ b

a

f(x)dx: is the integral of the function f(x) of the variable x, ranging in the interval [a; b]. This is

used to compute the area under the curve described by the function f(x), for values of the x−axis
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ranging in [a; b]. You will not encounter much of this, although this concept is often discussed in
STAT0019.

• exp is the exponential function, with properties exp(0) = 1, exp(1) = e = 2.7182818.
• log is the logarithm function, i.e. the inverse of the exponential function. This means that log (exp(x)) =

x, i.e. if you apply the log to exp you essentially cancel out these two functions and are left with
the argument to the inner function (exp). The log function only applies to positive numbers; also
log(1) = 0 and log(e) = 1.

• n!: the factorial function indicates the product n(n− 1)(n− 2) · · · 1, for any positive number n. This
is used in the definition of some probability distributions, including the Binomial (see Section 2.1, the
Student’s t Section 2.4)) and the Gamma family of distributions (see Section 2.5).

• x ∈ [a, b]: read “x is in the interval [a; b]. The symbol ∈ indicates group (or set, interval) membership.
• →: read “tends to” or “approaches”. This is used in expression such as n→∞ (read “n approaches

infinity”).
• f ′(x): read “f prime of x. This indicates the first derivative of a function f . This measures the changes in

the value of the function for infinitely small changes of the argument x. Derivatives are crucial concepts
in differentiation and calculus and are used to determine maxima or minima of a given function. This
is technically the notation introduce by Giuseppe Luigi Lagrangia, an Italian mathematician (actually
popular with the French version of his surname, Lagrange), who developed much of the early versions
of calculus.

• f ′′(x): read the second derivative of f . This is computed as the first derivative of a first derivative, so
f ′′(x) = f ′ (f ′(x)).

• mina f(a): the minimum of a given function with respect to its argument a. In other words, the value a
is the one in correspondence of which the function f(·) reaches its minimum. The obvious counterpart
is maxa f(a).



1

Basic concepts

Broadly speaking, the objective of statistical analysis is to produce “some summary” of the available data.

Sometimes, it is (at least theoretically) possible to deal with an entire population of observable quantities.
We often refer to these quantities as variables that may take any one of a specified set of values, for
a given individual. Examples are age (of persons), income (of households), socio-economic class (of
workers). Data are the set of values of one or more variables recorded on one or more individuals or
items.

An example of the theoretical construct underpinning the concept of population is represented by a census.
In such cases, every single unit that is present in the population (and is thus of interest to the research
question) is actually measured. We can use these measurements to summarise the information provided
by the data using what are often called descriptive statistics. Notice that, particularly in this idealised
case where we have observed everyone in the population, it is important to be able to fully characterise
the underlying measurements with easily-interpretable quantities (as opposed to looking at each single
measurement).

In addition, as mentioned above, the idea of a “population” is often elusive: in the case of the census,
everybody living in a given country is supposed to fill in the questionnaire and thus provide extensive
information about themselves. So, surely we collect information about the whole population. Or do we?. . .
The problem is that populations are intrinsically dynamic — people die and new babies are born. Similarly,
people get married or divorced (thus changing their marital status).

Consequently, the very concept of “population” and the idea that we may be able to fully observe everything
is pretty much wishful thinking. Moreover, even if we could think of an entire observed population, it may
still be impossible to obtain data on each and every individual/unit. There are several reasons for this:

• Economic reasons: to measure as many units as there are in the population may cost too much money,
thus limiting the usefulness of the information collected;

• Accuracy reasons: it may be better to measure very precisely a limited number of units, than just
investing the same amount of resources to collect less precise information on a larger number of
individuals;

• Physical reasons: sometimes, the very act of measurement destroys the unit. For example, consider the
case in which you want to know the life-time of a population of 100 bulbs. You may light all of them
and measure how long it takes before they all burn. And you would have very precise information
about this quantity. But at the end of the process, you would not have any bulb left to use. . .

For these reasons, invariably we rely on information obtained from a sample of units, drawn from the
population of interest, for which a measurement is indeed available. We can use these units to make
inference about the (theoretical) underlying population.

https://www.ons.gov.uk/census
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Figure 1.1: A schematic representation of the distinction between probability calculus and statistics. The
data-generating process goes “left-to-right”, from the alleged population presented in panel (a), to the
(many) possible samples that can randomlyarise from it, through a specified probabilistic mechanism,
some of which are depicted in panel (b)

Figure 1.1 shows a schematic representation of the process moving from a theoretical population (made by
N = 10 units) to some potential samples of size n = 5. Typically, we indicate the population parameters
(e.g., the “true” mean and standard deviation, that we could compute if we could access the whole
population — more on the definition of these quantities later in this chapter) using Greek letters, e.g.,
µ or σ. Ideally, we would like to learn about these quantities — but as mentioned above, we really
cannot observe the whole population (which, again, might not even exist as such!). Thus, we rely on
the sample statistics, which we indicate using Roman letters, e.g., x̄ for the sample mean and sx for the
sample standard deviation (see Section 1.5 for more details on the definition, meaning and use of these
quantities).

Example 1.1 (Many samples?). Consider the following idealised situation. You are some kind of God
and know all there is to know about a specific population of individuals. You are also a very lucky God,
because this population of interest is relatively small and only formed by N = 25 units. The “true” data
showing the weight (in Kg) for each individual are presented in Table 1.1, which we indicate as yi.

Table 1.1: Whole population data on weight

73.134 54.311 82.485 68.569 47.659
75.259 82.401 52.116 61.638 31.907
69.135 56.550 66.988 85.416 69.868
42.871 93.900 39.348 54.570 49.476
67.182 77.861 20.851 72.541 92.979

Some basic properties of the whole population are the following:

• Total size: N = 25;
• Mean weight:
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µ =
N∑
i=1

yi
N
= 63.561.

This is a measure of “central tendency” (more on this later, in Section 1.5);
• Standard deviation:

σ =

√√√√ N∑
i=1

(yi − µ)2
N

= 18.544.

This is a measure of variation around the mean (more on this later, in Section 1.5).

For some reason, you decide that you do not want to share the whole population data — but only make
available a smaller sample, randomly selected from it. Of course, there are many possible ways of sampling
from this population (and of course, if you had a much bigger population, there would be even more
ways — again, more on this later in Chapter 2).

Say you consider three possible samples, as given by the table below. Each sample is determined by
the individual Id (a number from 1 to 25) — these are associated with the whole population values
in Table 1.1 reading along the rows (so that the first column indicates Ids 1,. . .,5; the second column
indicates Ids 6,. . .,10; etc.).

Table 1.2: Three possible samples from the entire population

(a)

Selected Id Weight

1 73.134
2 75.259
3 69.135
4 42.871
5 67.182

6 54.311
7 82.401
8 56.550

(b)

Selected Id Weight

13 66.988
14 39.348
15 20.851
16 68.569
17 61.638

18 85.416
19 54.570
20 72.541
21 47.659

(c)

Selected Id Weight

2 75.259
9 93.900

17 61.638
1 73.134

20 72.541

23 69.868
13 66.988

If we consider the equivalent summary statistics to the whole population, we get the following results:

• Sample 1:
– Sample size n1 = 8;
– Sample mean

ȳ1 =
n1∑
j=1

yj
n1
= 65.105;

– Sample standard deviation

s1 =

√√√√ n1∑
j=1

(yj − ȳ1)2

(n1 − 1)
= 12.936.

(The reason why the denominator in the sample standard deviation becomes (n1 − 1) will be
explored in Chapter 3.

• Sample 2:
– Sample size n2 = 9;
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– Sample mean

ȳ2 =
n2∑
j=1

yj
n2
= 57.509;

– Sample standard deviation

s2 =

√√√√ n2∑
j=1

(yj − ȳ2)2

(n2 − 1)
= 19.408.

• Sample 3:
– Sample size n3 = 7;
– Sample mean

ȳ3 =
n3∑
j=1

yj
n3
= 73.333;

– Sample standard deviation

s3 =

√√√√ n3∑
j=1

(yj − ȳ3)2

(n3 − 1)
= 10.136.

Which sample would you say is the “best” one?

Now: samples number 1 and 2 look a bit strange because they have selected consecutive units (1 to
8 for sample 1; and 13 to 21 for sample 2). This is not necessarily suspicious or wrong — but what if
people were numbered according to the household in which they live? This would mean that, probably,
consecutive Ids are more likely to indicate people living in the same household who are thus potentially
more correlated (e.g., parents and children). This may reduce the representativeness of the sample with
respect to the underlying population. Conversely, the third sample presents selected Ids that look more
random and so, arguably, may be deemed to be more reliable. Interestingly, despite this desirable property,
sample 3 is the one for which the summary statistics differ the most from the underlying population!
(More on this later in Chapter 2).
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(a) The entire population of size N = 10
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are now greyed out

Figure 1.2: A schematic description of the observed data, with the now explicitly unknown underlying
data-generating process greyed out. This time the process goes “right-to-left”, using the one and only
available dataset depicted in panel (b), to learn about the characteristics of the underlying population
shown in panel (a)
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In addition, in real life (i.e. when we do Statistics), we cannot access all possible samples that could have
been drawn from a given population. For example, in the trivial case above, the true population is not
really accessible to us (and thus it is greyed out in Figure 1.2). We only have one such sample (and again
all but the one in the left-bottom part of the right-hand side panel of Figure 1.2 are also greyed out).

Incidentally, there are in fact 252 different ways of picking at random 5 units out of the population made
by 10 — but again, all but one have not been drawn. We want to use the information in the actually
observed sample (e.g. the sample mean and standard deviation) to infer about the underlying population
parameters. That is what Statistics is all about.

1.1 How to obtain a random sample

In general, you can think of this process as extracting numbered balls from an urn — a bit like they do
when they call numbers in games such as Tombola or Bingo. If you extract the ball with number “14” on
it, then you are selecting into your sample the 14-th unit from a complete list of population members.

In reality, we are likely to use a computer to simulate “pseudo-random” numbers. For example, we can use
the freely available software R to sample 4 numbers from the set (1, 2, . . . , 20), using the following code.

# Simulate 4 numbers from the set of numbers from 1 to 20, without replacement
sample(x=1:20,size=4,replace=FALSE)

[1] 10 20 14 13

The resulting values shown here can be used to in fact select the corresponding units in a list of peoples
or items of interest. In this case, the option replace=FALSE instructs R to sample without replacement.
This means that if a unit is selected then it is taken out from the list of units that can be selected at a later
stage.

1.2 Types of data

Once we have identified a suitable procedure to sample from the underlying population, we are then
confronted with the actual data to analyse. As mentioned above, data are made by variables, which may
have differences in nature. The broadest categorisation in terms of types of data is probably the following.

1. Qualitative (non numerical):
• Categorical: no actual measurement is made, just a qualitative judgment e.g., sex, hair colour. The

observations are said to fall into categories.
• Ordinal: there is a natural ordering of the categories such as degree of severity of a disease (mild,

moderate, severe), occupational group (professional, skilled manual, unskilled manual).
2. Quantitative (numerical):

• Discrete: can only take one of a discrete set of values (e.g., the number of children in a family, the
number of bankruptcies in a year, the number of industrial accidents in a month).

• Continuous: can in principle take any value in a continuous range, such as a person’s height or
the time for some event to happen. In practice, all real observations are discrete because they are
recorded with finite accuracy (e.g., time to the nearest minute, income to the nearest pound). But
if they are recorded sufficiently accurately they are regarded as continuous.

1.3 Numerical data summaries

Qualitative and discrete data can be easily summarised using a frequency table.
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Example 1.2 (Accident data). Data are collected routinely to describe the type of accident that people
have in a given time period. These are grouped according to some broad categories. The categories are
the types of accident. The number of children dying from each type of accident is the frequency of that
category. The relative frequency or proportion of children dying from each type of accident is the frequency
divided by the total number of deaths. Multiplying the relative frequencies by 100 gives the percentages
(i.e., the relative frequencies per 100 cases), as shown in Table 1.3.

In general, it is a good idea to sort out the data in terms of the frequencies, for ease of presentation.

Table 1.3: The number of fatal accidents to children under 15 in the UK during 1987 (source: Action
on Accidents, produced by the National Association of Health Authorities and the Royal Society for the
Prevention of Accidents)

Number of children Percentage

Pedestrians (road; P) 260 30.88
Burns, fires (mainly home; B) 119 14.13
Vehicle occupants (road; V) 96 11.40
Cyclists (road; R) 73 8.67
Drownings (home and elsewhere; D) 63 7.48

Choking on food; C) 50 5.94
Falls (home and elsewhere; F) 40 4.75
Suffocation (home; S) 34 4.04
Other (O) 107 12.71

When we deal with continuous data, frequency tables are not so straightforward, because the number of
categories is much larger (and, theoretically, infinite).

Example 1.3 (Heights). The following data considers individual measurements of span (in inches) of
140 men.

Table 1.4: Individual measurements of span (in inches)

68.2 67.0 73.1 70.3 70.9 76.3 65.5 72.4 65.8 70.7 65.1 66.5 67.5 64.4
64.8 72.7 71.9 73.9 68.3 66.1 69.9 68.5 72.5 67.5 72.1 71.6 65.6 65.7
64.2 71.6 73.4 70.8 71.5 76.0 68.0 65.1 70.1 68.4 71.3 73.9 70.3 72.4
73.9 72.3 67.6 70.2 66.6 75.1 72.2 65.6 72.2 67.0 67.1 70.8 70.7 68.2
69.5 70.0 73.0 65.0 70.0 68.2 69.8 74.8 73.8 68.3 65.4 66.5 67.3 73.2

70.8 71.0 69.9 75.4 72.2 68.6 65.5 68.0 66.3 67.6 68.0 69.8 65.8 68.0
68.4 71.0 71.8 72.3 67.6 69.4 73.2 70.3 70.3 63.9 70.3 73.9 66.0 68.4
72.7 67.4 64.3 71.1 71.2 69.1 64.7 73.2 74.0 66.5 66.7 66.7 72.2 61.5
72.6 68.3 71.5 65.5 70.5 70.7 67.5 74.2 69.4 67.1 70.8 67.8 70.8 66.9
67.5 66.8 70.4 70.6 66.5 70.5 68.2 74.7 69.7 66.9 74.0 67.9 72.1 61.3

One way of getting round the large number of different values in the dataset is perhaps to consider
grouped frequency tables, such as the that in Table 1.5. This can be obtained using the following process.

1. Calculate the range of the data i.e., the largest value minus the smallest value.
2. Divide the range up into groups. Aim at having between 5 and 15 groups.
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3. Calculate the frequency of each group.

Table 1.5: Grouped frequency table for the measurements of span

Frequency Relative frequency

61-62.4 2 0.014
62.4-63.9 1 0.007
63.9-65.4 9 0.064
65.4-66.9 21 0.150
66.9-68.4 29 0.207

68.4-69.9 11 0.079
69.9-71.4 27 0.193
71.4-72.9 20 0.143
72.9-74.4 14 0.100
74.4-75.9 4 0.029

75.9-77.4 2 0.014

The resulting table is certainly more informative than the fill list of the original values. But we are losing
information by grouping the data — for instance, we only know that 5 individuals are in the range 61-62.4.
However, we have lost track of the actual value for the span measurements of these 5 individuals.

1.4 Graphical summaries of data

Often, it is preferable to summarise data using pictorial representations. Different types of data are best
displayed using different graphs. For example, when considering qualitative data, a good choice is given
by a barplot. Using software such as R a barplot can be easily obtained using the command barplot(...)
where ... is the name of the object containing the frequencies we want to depict (the barplot can be
customised to produce nicer graphs than the default version — but that is for another day. . . ).

This type of display also works for discrete data, when we can essentially plot the frequency (either
absolute or relative) for each of the possible discrete values.

When we deal with continuous data, it is basically impossible to draw barplots, because it is extremely
unlikely (more on this later, in Chapter 2) that two distinct observations are measured to be the extact
continuous value. In this case, we can use a histogram. This is a graph of the information in a grouped
frequency table. For each group, a rectangle is drawn with base equal to the group width and area
proportional to the frequency for that group. In R can be obtained by the command hist(...) — note
that, in general you can use the command help(...) where ... is the name of a R function (e.g., hist)
to visualise extensive help on the function inputs and outputs.

Figure 1.4 shows two different histograms for the height data: the one on the left panel shows the absolute
frequencies, while the right panels shows the relative frequencies.

Notice that bar are drawn in correspondence with grouped values of heights. In fact, by default, R splits
the range of data in intervals. Usually the groups are of equal width, as in the above example, and the
height of the rectangle is then also proportional to the frequency. It is common for the vertical axis to be
called “frequency” in this situation, which really means “frequency per group width” (sometimes also
called “frequency density”).

We could of course modify this and present different depictions of the data according to different groupings
along the x−axis. For instance, we could produce a histogram showing the frequency per 1.4 inches, as
depicted in Figure 1.5.
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Figure 1.4: Histogram for the distribution of the height data

1.5 Summary statistics

In addition to graphical displays it is often useful to have numerical summary statistics that attempt
to condense the important features of the data into a few numbers. It is helpful to try and distinguish
between population and sample summary statistics.

1.5.1 Measures of Location (or Level)

Mean. This is sometimes referred to as the arithmetic mean, to distinguish it from other types of mean,
such as geometric mean and harmonic mean. It is defined as
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Figure 1.5: Histogram for the distribution of the height data per 1.4 inches

mean =
the sum of all observations

the total number of observations

This is often written in the mathematical notation x̄ which you will find in textbooks and on calculators.
Using Example 1.3 to help explain the notation:

• n is the number of observations in the sample, in this case n = 140.
• y1 is the height of the first individual in the sample, i.e. y1 = 68.2.
• y2 is the height of the first individual in the sample, i.e. y2 = 64.8.
•
∑
yi is the sum of all the y = (y1, . . . , yn) values, in this case

∑
yi = 9721.8.

• ȳ is the mean of the sample

ȳ =
∑n
i=1 yi
n

=
68.2 + 64.8 + . . . + 61.3

140
= 69.441.

The mean has some properties that it is useful to understand:

1. Imagine trying to balance the data on the end of a pencil. The point on the scale where the figure
balances exactly is the mean. This helps us understand why if the data are symmetric, the mean is in
the middle; and it tells us intuitively where the mean must be if the data are not symmetric.

2. Suppose that you subtract the mean from each data value. Then the resulting differences (sometimes
called residuals) must add to zero. That is

(y1 − ȳ) + (y2 − ȳ) + · · · + (yn − ȳ) =
n∑
i=1

yi − nȳ = nȳ − nȳ = 0 .

Median. The median of a set of numbers is the value below which (or equivalently above which) half of
them lie. It is also known as the 50-percentile point. To find the median of n observations, first put the
observations in increasing order. The median is then given by:
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• the n+1
2 −th observation if n is odd;

• the mean of the n
2−th and the n

2 + 1−th observations if n is even.

For the data in Example 1.3, we can use the R command sort to write the observations in increasing
order as follows.

[1] 61.3 61.5 63.9 64.2 64.3 64.4 64.7 64.8 65.0 65.1 65.1 65.4 65.5 65.5 65.5
[16] 65.6 65.6 65.7 65.8 65.8 66.0 66.1 66.3 66.5 66.5 66.5 66.5 66.6 66.7 66.7
[31] 66.8 66.9 66.9 67.0 67.0 67.1 67.1 67.3 67.4 67.5 67.5 67.5 67.5 67.6 67.6
[46] 67.6 67.8 67.9 68.0 68.0 68.0 68.0 68.2 68.2 68.2 68.2 68.3 68.3 68.3 68.4
[61] 68.4 68.4 68.5 68.6 69.1 69.4 69.4 69.5 69.7 69.8 69.8 69.9 69.9 70.0 70.0
[76] 70.1 70.2 70.3 70.3 70.3 70.3 70.3 70.4 70.5 70.5 70.6 70.7 70.7 70.7 70.8
[91] 70.8 70.8 70.8 70.8 70.9 71.0 71.0 71.1 71.2 71.3 71.5 71.5 71.6 71.6 71.8
[106] 71.9 72.1 72.1 72.2 72.2 72.2 72.2 72.3 72.3 72.4 72.4 72.5 72.6 72.7 72.7
[121] 73.0 73.1 73.2 73.2 73.2 73.4 73.8 73.9 73.9 73.9 73.9 74.0 74.0 74.2 74.7
[136] 74.8 75.1 75.4 76.0 76.3

(notice that the numbers in square brackets in the left hand side of the display indicate the sequential
value in the series of data. For example, the notation [43] indicates that the value 67.5 is the 43−th in
the series).

As n = 140 is even, the median is the mean between the n
2−th (70−th) and the n

2 + 1−th (71−th)
observations, i.e.

med(y) =
y70 + y71

2
=
(69.8 + 69.8)

2
=

139.6
2

= 69.8.

Quartiles (and other quantiles). In the same way as for the median, we may calculate the value below
which some specified fraction of the observations lie. The lower quartile qL is the value below which one
quarter of the observations lie and the upper quartile qU is the value below which three quarters of the
observations lie. The lower and upper quartiles are also known as the 25 and 75 percentiles. Different
text books may use slightly different definitions of sample quartiles. Here is a standard one: as when
finding the median, first put all the n observations in increasing order. Then:

i. If n4 is not a whole number then calculate a, the next whole number larger than n
4 , and b, the next

whole number larger than 3n
4 . The lower quartile is the ath observation and the upper quartile is the

bth observation.

ii. If n4 is a whole number then the lower quartile is the mean of the n
4−th and

(
n
4 + 1

)
−th observations

and the upper quartile is the mean of the 3n
4 −th and

(
3n
4 + 1

)
−th.

In Example 1.3, n = 140, so n
4 =

140
4 = 35. which is a whole number. So the lower quartile qL can be

computed using the rule in point ii. above.

In R we can easily compute all these summaries using built-in functions, for example as in the following
code.

# Mean
mean(height)

[1] 69.44143

# Median
median(height)

[1] 69.8
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# 0.25 Quantile (=lower quartile)
quantile(height,0.25)

25%
67.075

# 0.975 Quantile (=upper quartile)
quantile(height,0.75)

75%
71.825

1.6 Measures of spread

Range. The range is the largest observation minus the smallest observation. In Example 1.3, the range is
76.3− 61.3 = 15.

Interquartile Range. The range has the disadvantage that it may be greatly affected by extreme values
that are a large distance away from the main body of the data, so that it may not give an informative
measure of the spread of most of the data. A more stable measure is the interquartile range, which is the
range of the middle half of the data. Thus

interquartile range = upper quartile− lower quartile = qU − qL.

For the data in Example 1.3 the interquartile range is 71.825− 67.075 = 4.75. In R we can also use the
built-in function IQR(...), where ... is the name of the vector of data for which we want to compute
the interquartile range, to make the same computation.

Variance and Standard deviation. If we consider the population at large, then the variance is defined
as

Population variance = σ2 =
N∑
i=1

(yi − µ)2

N
.

This quantity is the sum of squares of the residuals (i.e. the difference between each observation and the
overall sample), divided by the total number of observations N . The units of the variance are the square
of the units of the original data, so its numerical value is not particularly useful as a measure of spread.

Thus, we usually consider the square root of the variance

Population standard deviation = σ =
√
σ2 =

√√√√ N∑
i=1

(yi − µ)2
N

,

which is called the standard deviation. This directly reflects how each observation deviates from the
central tendency as represented by the mean — notice that σ is defined on the same scale as the original
data yi and their mean and as such is a more naturally interpretable quantity. In general, large values
of the standard deviation indicate that the population is very variable — there are very large residuals,
i.e. some of the units have values that deviate substantially from the mean. The two quantities σ and σ2

are population parameters — they characterise the overall population. But they are not directly measurable
when we consider a small(er) sample. The sample counterparts are defined in a fairly similar way to the
population parameters. The sample variance is
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Sample variance = s2 =
(y1 − ȳ)2 + (y2 − ȳ)2 + . . . + (yn − ȳ)2

n− 1
=
∑n
i=1(yi − ȳ)2

n− 1

(the sample standard deviation, is obviously defined as the square root of the sample variance).

The only two real differences between the population and sample defintions are that

1. The sample statistics are computed using the n available data points, while the population (theoretical)
parameters are computed using the whole N data points that make it up.

2. The sample statistics are scaled by n − 1, instead of by n. The reason for this is that the standard
deviation (and the variance) is a function of the mean — whether you consider the population or the
sample version, the numerator is made by the difference between each observation and the overall
mean. And because the mean is

ȳ =
n∑
i=1

yi
n
=
(y1 + . . . + yn)

n

it follows that
yn = nȳ − (y1 + . . . + yn−1). (1.1)

Thus, if you know the mean and the first (n − 1) observations, the n−th one is automatically
determined by Equation 1.1. For this reason, when we compute the standard deviation or the variance,
we only have (n− 1) degrees of freedom (i.e. the total number of parameters that are free to vary
with no restrictions); in other words, you have n data points and are trying to estimate the mean µ
using ȳ and the standard deviation σ using the sample counterpart s. But ȳ and s cannot both vary
independently — once you have estimated ȳ from the n data points, s cannot vary at leasure any
more. And for this, we re-scale the sample quantities by (n− 1).
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Statistical distributions: working with probability calculus

The objective of this chapter is to present a brief introduction to the use of some probability distributions
to model sampling variability in observed data. For now, we consider a situation very simular to the one
discussed in the context of Figure 1.1: we assume that there is a data generating process (DGP), i.e. a
way in which data can arise and become available to us. This DGP determines the way in which some
units are actually sampled from the theoretical target population.

As mentioned in Chapter 1, there are many different ways in which we can obtain a sample of n individuals
out of the N >> n that make up the whole population. In a nutshell (and somewhat making a more
trivial argument than it really is), the ideas we explore in this chapter assume that we can safely assume
a DGP characterised by a probability distribution; often, we use the phrase “the variable y has a XXX
distribution”. While this terminology is almost ubiquitous in Statistics and Probability Calculus, it is in
fact slightly misleading. What we really mean is a rather handy shortcut for the much more verbose (and
correct!) phrasing

“We can associate the observed data with a XXX distribution to describe our level of uncertainty,
e.g. on the sampling process that has determined the actual observation we have made (or we will
make in the future).”

Of course, it would be very impractical to always use this mouthful sentence — and practically nobody
does. But: it is important to understand that probability distributions or DGPs are not physical properties
of the data — that is why the data cannot have a probability distribution. Rather, they are mathematical
idealised concepts that we use to represent complex phenomena in a convenient way.

In general, the DGP will depend on a set of parameters (which in general we indicate with Greek letters,
e.g. θ, µ, σ, λ, etc). The distribution is characterised by a mathematical function, something like

p(y | θ1, θ2, θ3) = θ1
θ2√
θ3

exp
(
(y − θ2)2

log(θ3)

)
(the actual form of this function is irrelevant here and this specific one is only chosen to make a point!). In
this case, the parameters are θ = (θ1, θ2, θ3) and, given a specific value for them, we determine a certain
value of the underlying probability distribution for the observable outcomes, y. In other words, we can
use a probability distribution to describe the chance that a specific outcome arises, given a set values of
the parameters.

For example, for the fake distribution above, if θ = (2, 1, 0.6), then p(y) = 2.582 exp
(
(y−1)2

−0.5108

)
. The

graph in Figure 2.1 shows a graphical representation of the distribution p(y) for the set values of θ.
In this case, we are implying that the probability is distributed around a central part (more or less in
correspondence of the value 1 along the x−axis) and that values increasingly further away are associated
with very small probability weight (and thus are deemed unlikely by this model).
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Figure 2.1: A graphical example of a probability distribution for a given set of value for the parameters θ

Of course, the assumption that we know the value of the parameters is certainly a big one and, in general,
we are not in a position of having such certainty. And that is the point made in Figure 1.2 — instead of
going from left to right, in reality we will try and go from right (i.e. using the one and only sample that
we have indeed observed) to make assumptions and learn something about the DGP. This is the process
of statistical analysis/estimation (which we will consider in Chapter 3).

In the rest of this chapter we present some of the most important and frequently use probability distribu-
tions.

2.1 Binomial and Bernoulli

The Binomial distribution can be used to characterise the sample distribution associated with a discrete
variable R describing the total number of “successes” in n independent binary trials (e.g. the outcome is
either 0 or 1, dead or alive, male or female, etc.), each with probability θ of success.

You may think of this as a case where an individual randomly selected from the target population is
associated with a probability θ of experiencing an event of interest (e.g. having cardiovascular disease).
Then, if you select n individuals randomly and you can assume that the event happens more or less
independently on the individuals (e.g. if I have cardiovascular disease, this does not modify the chance
that you do), then the sampling process can be described by the following equation

p(r | θ, n) =
(
n
r

)
θr (1− θ)n−r; r = 0, 1, . . . , n, (2.1)
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where the term(
n
r

)
=

n!
r!(n− r)!

=
n(n− 1)(n− 2) · · · 1

[r(r − 1)(r − 2) · · · 1][(n− r)(n− r − 1)(n− r − 2) · · · 1]

is known as the binomial coefficient.

( Independence

The assumption of independence is most useful from the mathematical point of view. In a nutshell,
this comes from the fact that if we have n observed data points and we can assume that they
are independent, then their joint probability distribution (i.e. a function describing their joint
variability) can be factorised into the product of the single probability distributions:

p(y1, y2, . . . , yn | θ) =
n∏
i=1

p(yi | θ). (2.2)

The main advantage of this factorisation is that the elements of the product on the right-hand
side of Equation 2.2 are of lower dimension than the full joint distribution on the left-hand side.
For example, full independence implies that instead of modelling an n−dimensional probability
distribution, we can simply model n 1−dimensional distributions, which is much simpler, both
intuitively and computationally.
Of course, there are instances where the assumption of independence clearly does not hold. For
example, you may think of n observations taking value 1 if the i−th individual has some infectious
disease (e.g. sexually transmitted) and 0 otherwise. Then, if I do have the disease, this may well
affected your chance of becoming infected (depending on what the transmission mechanism is).
Or in a slightly simpler context, it may be that we cannot claim marginal independence (i.e. that,
without reference to any other feature, the two variables X and Y are independent). But we may
be able to claim a conditional version — for instance if, given the value of a third variable Z, then
X and Y may be reasonably assumed to not influence each other.

Essentially, the terms θr and (1 − θ)n−r are used to quantify the fact that out of the n individuals, r
experience the event, each with probability θ. Thus, because we are assuming that they are independent
on one another, this happens for each with probability θ or overall by multiplying this by itself for r times,
i.e. θr. Conversely, (n− r) do not experience the event, which again assuming independence is computed
as (1− θ) multiplied by itself for (n− r) times — or (1− θ)(n−r).

The binomial coefficient is considered to account for the fact that we do not know which r of the n
actually experience the event — only that r do and (n− r) do not. The binomial coefficient quantifies all
the possible ways in which we can choose r individuals out of n. For example, if we consider of population
of size 5 and we want to sample 3 people from it, we could enumerate all the possible combinations. In R
we can do this using the following command

combn(5,3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 1 1 1 1 1 2 2 2 3
[2,] 2 2 2 3 3 4 3 3 4 4
[3,] 3 4 5 4 5 5 4 5 5 5

which returns a matrix where each column represents one of the possible
(

5
3

)
= 5×4×3×2×1
[3×2×1][2×1] = 10

samples. The units in the population are labelled as 1,2,. . .,5 and so the first possible sample (the first
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column of the output) would be made by the first three units, while the tenth (the last column) would be
made by units 3, 4 and 5.

A Binomial with n = 1 is simply a Bernoulli distribution, denoted Y ∼ Bernoulli(θ). As is obvious, Y can
only take on the values 0 (if the indiviual does not experience the event) or 1 (otherwise); in addition,

because by definition
(

1
1

)
=
(

1
0

)
= 1, the probability distribution for a Bernoulli variable is simply

p(y | θ) = θy (1− θ)1−y; y = 0, 1.

The Bernoulli model essentially describes the sampling process for a binary outcome applied to a single
individual. So if you have n individuals and you record whether each has an event or not, you can either

describe the sampling process as n independent Bernoulli variables y1, . . . , yn
iid∼ Bernoulli(θ), where the

notation iid∼ indicates independent and identically distributed variables; or by considering the total number
of people who have had the event r =

∑n
i=1 yi = y1 + . . . + yn and modelling it using a single Binomial

variable r ∼ Binomial(θ, n). When the only information available is about either the individual outcomes
(yi) or the aggregated summary (r), the two models are equivalent. If we have access to the individual
level data (ILD), we can use the n Bernoulli variables directly. Often, however, we will not be able to
access the ILD and will only know the observed value of the summary (r) — in this case we cannot use
the Bernoulli model and need to work with the Binomial sampling distribution.

Equation 2.1 can be used to compute the probability of observing exactly r individuals experiencing the
event in a sample of n, given that the underlying probability is θ. For example, if we set r = 12, n = 33
and θ = 0.25, then

p(r = 12 | θ = 0.25, n = 33) =
(

33
12

)
0.2512 (1− 0.25)33−12

= 354817320× 0.00000005960464× 0.002378409

= 0.0503004.

In R we can simply use the built-in command dbinom to compute Binomial probabilities, for instance

dbinom(x=12,size=33,prob=0.25)

[1] 0.0503004

would return the same output as the manual computation above.

We can also use the built-in command rbinom to simulate values from a given Binomial distribution. For
example, the following code can be used to produce the graph in Figure 2.2 that illustrates a histogram
from a random sample of 10000 observations from a Binomial(0.25,33) distribution.

tibble(r=rbinom(n=10000,size=33,prob=0.25)) %>%
ggplot(aes(r)) + geom_histogram(
breaks=seq(0,33),color="black",fill="grey"

) + theme_bw() + xlab("Number of successes") +
ylab("Absolute frequency") +
scale_x_continuous(breaks = seq(0, 33, 1), lim = c(0, 33))

The R code here is probably unnecessarily complicated to show some of the features in terms of customisa-
tion of the graph, using the tidyverse and ggplot2 approach. We first define a tibble, a special R object
containing data, which we fill with a vector r that contains 10000 simulated values from the relevant
Binomial distribution. We then apply ggplot to construct and style the histogram.

https://www.tidyverse.org/
https://ggplot2.tidyverse.org/
https://tibble.tidyverse.org/
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Figure 2.2: Histogram of a random sample of 10000 observations from a Binomial(θ = 0.25, n = 33)
distribution

The graph in Figure 2.3 shows three examples of Binomial distributions with θ = 0.3 but upon varying
the sample size. As the sample size increases, the histogram becomes more symmetrical around the mean
(θ = 0.3).

Because of the mathematical definition of the Binomial distribution, it can be proved that if R ∼
Binomial(θ, n), then

• The mean (or “expected value”) is E[R] = µ = nθ;
• The variance is Var[R] = σ2 = nθ(1− θ).

Consequently, for a single Bernoulli variable, the mean is simply θ and the variance is simply θ(1− θ).
Both the Bernoulli and Binomial distributions were derived by the Swiss mathematician Jacob Bernoulli,
in the late 17th century. Bernoulli was part of a large family of academics and mathematicians, who have
contributed to much of the early development of probability calculus and statistics.

2.2 Poisson

Suppose there are a large number of opportunities for an event to occur, but the chance of any particular
event occurring is very low. Then the total number of events occurring may often be represented by a
discrete variable Y . The sampling process that can be used to describe this situation is based on the
Poisson distribution, named after the French mathematician Siméon Denis Poisson. Poisson used this
model in the 19th century in his “Research on the Probability of Judgments in Criminal and Civil Matters”,
in which he modelled the number of wrongful convictions.

Mathematically, if y ∼ Poisson(θ) then we have that

https://en.wikipedia.org/wiki/Jacob_Bernoulli
https://en.wikipedia.org/wiki/Sim%C3%A9on_Denis_Poisson
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Figure 2.3: Binomial distributions for the number of successes in n = 5, 20, 100 Bernoulli trials, each
with probability θ = 0.3 of success

p(y | θ) = θy e−θ

y!
y = 0, 1, 2, 3, . . . (2.3)

For a Poisson distribution, the parameter θ represents both the mean and the variance: E[Y ] = µ =
Var[Y ] = σ2 = θ. This may at times be a limitation because often empirical data tend to violate this
assumption — they show larger variance than the mean, a phenomenon often referred to as overdispersion.
Suitable models can be used to expand the standard Poisson set up to account for this feature. In addition,
in many applications, the Poisson sampling distribution will arise as a total number of events occurring
in a period of time T , where the events occur at an unknown rate λ per unit of time, in which case the
expected value for Y is θ = λT .

Generally speaking, the Poisson distribution is used to model sampling variability in observed counts,
e.g. the number of cases of an observed disease in a given area. The examples in Figure 2.4 show that
if events happen with a constant rate, observing for longer periods of time leads to smaller relative
variability and a tendency towards a symmetrical shape. Comparison of Figure 2.4 with Figure 2.3 shows
that, when sample size increases, a Binomial might be approximated by a Poisson with the same mean.

The main distinction between the Poisson and the Binomial models is that in the latter case we consider
the number of events out of a fixed and known total number of possible occurrencies (the sample size, n).
In the case of the Poisson, we generally consider the overall number of events (counts), without formally
restricting the total number of occurrencies. For this reason, the Poisson distribution may be used to
model the probability of observing a certain number of goals in a football match (which, theoretically is
unbounded), while the Binomial distribution can be used to model the number of Gold medals won by
Italy at the next Olympic Games (which physically is bounded by the total number of sporting events).

If you consider this, it becomes perhaps more intuitive why the Poisson is the limiting distribution for the
Binomial, as n increases to∞. Figure 2.5 shows two histograms summarising 1,000,000 simulations from:
a) y1 ∼ Binomial(θ = 0.05, n = 200); and b) y2 ∼ Poisson(µ = nθ = 7.5). As is possible to see, because
the underlying probability θ is fairly small (i.e. the event of interest is rare), for all intents and purposes,
n = 200 is effectively as large as n → ∞ and the two distributions overlap almost completely. If θ is
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Figure 2.4: Poisson distributions representing the number of events occurring in time T = 5, 20, 100,
when the rate at which an event occurs in a unit of time is λ = 0.3: the Poisson distributions therefore
correspond to θ = 1.5, 6 and 30.

larger, then we need a much bigger sample size n before the Binomial distribution is fully approximated
by a Poisson(λ = nθ).

We can use R to compute probabilities or simulate random numbers from a Poisson distribution in a
similar fashion as to what shown above. For instance, if we set θ = 2 we can compute the probability
of observing y = 8 events using the following command (note that, somewhat confusingly, R calls the
parameter we have indicated as θ with the name lambda).

dpois(x=8,lambda=2)

[1] 0.0008592716

The answer could be determined also by a simulation approach, as follows.

set.seed(10230)
# Vector of number of simulations
n=c(100,1000,10000,100000,1000000,10000000)
# Initialise (an empty) vector of (numeric) probabilities
prob=numeric()
# Simulates n[i] observations from a Poisson(lambda=2) and then
# counts the proportion of simulations with value 8
for (i in 1:length(n)) {

y=rpois(n=n[i],lambda=2)
prob[i]=sum(y==8)/n[i]

}
# Formats and shows the output
nlab=format(n,scientific=FALSE,big.mark=",")
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Figure 2.5: Histogram for two samples of 1000000 observations from a Binomial(0.05,200) (in red) and
a Poisson(7.5=0.05 × 200) (in blue). When the two histograms overlap, the resulting colour is shaded to
purple

names(prob)=nlab
prob

100 1,000 10,000 100,000 1,000,000 10,000,000
0.0000000 0.0000000 0.0015000 0.0008100 0.0007820 0.0008638

If we inspect the output of this process, we see that as we increase the size of the simulation to 10,000,000,
then the numerical answer (0.0008638) becomes very close to the analytic one (0.0008593). When we
consider a small number of simulations, our numerical estimate of the “true” analytic value is not very
precise at all.

This process of numerical approximation of a quantity through simulation is often termed Monte Carlo
analysis (more on this in STAT0019, if you take it).

2.3 Normal

The Normal distribution is fundamental to much of statistical analysis. Often it is referred to as Gaussian,
from the name of its inventor, the German mathematician Carl Friedrich Gauss, who in the late 18th
century used it to describe “normally distributed errors”.

A continuous variable is associated with a Normal distribution if we can assume that the underlying
sampling process has the following properties:

https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
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1. Symmetry: we expect to see most of the observations scattered around a central location, with “errors”,
or deviation from the central location becoming increasingly smaller as we move further away.

2. Unboundness: we do not place any physical restriction on the size of the values that the variable can
take on. Technically speaking, we say that the range of the variable is the set (−∞;∞). Notice however
that, in reality, we will never observe a variable to take on the value∞ and all our observations will
in fact be finite values.

When we assume that a variable Y is well described by a Normal distribution, we then write Y ∼
Normal(µ, σ), with

p(y | µ, σ) = 1√
2πσ

exp
(
−1

2
(y − µ)2

σ2

)
; −∞ < y <∞. (2.4)

Equation 2.4 shows that the Normal distribution is characterised by two parameters: µ is the population
mean and σ is the population standard deviation (see Chapter 1). Mathematically, the function in
Equation 2.4 is a probability density. This is due to the fact that the underlying variable is continous and, as
such, it can take on any real number, e.g. -1.21131765366772, 2.32279253568801, -6.52670986118001,
25.5187887120438.

As mentioned in Chapter 1, for a continuous variable it is a mathematical impossibility that two different
observations have the exact same value (technically, there is 0 probability that this happens). Thus, we
can think of a probability density as a histogram where each group width is arbitrarily small. Figure 2.6
shows this for a sample of values from a Normal(0,1) distribution. The histogram in panel (a) uses group
width of 0.50 — this means that the base on each rectangle is exactly 0.50 and the height is indicated
along the y−axis of the graph. The histograms in panels (b)–(d) have increasingly small bar widths,
approaching to a value ε→ 0. Each graph has superimposed a Normal(0,1) density — as is possible to
see the graph in panel (d) shows essentially no distinction between the histogram approximation and the
true density.

An important consequence is that, unlike the case of discrete variables, for which R commands such as
dbinom(...) or dpois(...) allows us to calculate the actual probability of observing an exact value, for
continuous variables the command dnorm(...) computes the density associated with a small interval
around the value.

The Normal distribution (and the respective R code) can be used to compute tail area probabilities. For
example, the command

qnorm(p=0.975,mean=0,sd=1)

[1] 1.959964

returns the value y such that for a variable Y ∼ Normal(µ = 0, σ = 1), we obtain Pr(Y ≤ y) = 0.975 —
that is the 97.5% quantile of the Normal distribution. Figure 2.7 shows graphically that the area under
the Normal(0,1) density between −∞ and 1.959964 ≈ 1.96 does cover most of the probability mass —
and in fact exactly 97.5%, which in turns implies that Pr(Y > 1.96) = 0.25.

Tail area probabilities can be used to compute the probability that a Normal variable lies within a given
range. For example, we could use the following code

# Computes y1 so that, given Y~Normal(0,1), Pr(Y<=y1)=0.975
y1=qnorm(p=0.975,mean=0,sd=1)
# Computes y2 so that, given Y~Normal(0,1), Pr(Y<=y1)=0.025
y2=qnorm(p=0.025,mean=0,sd=1)
# Now verifies that Pr(Y<=y1) - Pr(Y<=y2) = 0.975 - 0.025 = 0.95
pnorm(q=y1,mean=0,sd=1)-pnorm(q=y2,mean=0,sd=1)
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Figure 2.6: Histograms for a sample from a Normal distribution with µ = 0 and σ = 1, with superimposed
(in blue) the density of a Normal(0,1).
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Figure 2.7: Tail area for a Normal(0,1) distribution
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[1] 0.95

to check that the area comprised between the 97.5%-quantile and the 2.5%-quantile (i.e. the interval
-1.96 to 1.96) does contain 95% of the probability distribution. Note the use of the built-in R functions
qnorm and pnorm that compute the quantile, given a specified probability or a probability, given a specified
quantile, under a Normal distribution.

2.4 Student’s t

A standardized Student’s t distribution has a prominent role in classical statistics as the sampling
distribution of a sample mean divided by its estimated standard error. Y ∼ t(µ, σ2, ν) represents a
Student’s t distribution with ν degrees of freedom:

p(y | µ, σ2, ν) =
Γ
(
ν+1

2

)
Γ
(
ν
2

)√
πνσ

1(
1 + (y−µ)2

νσ2

) ν+1
2

; −∞ < y <∞, (2.5)

where the symbol Γ (x) = (x− 1)! = (x− 1)(x− 2) · · · 1 indicates the Gamma function (NB: not to be
confused with the Gamma distribution presented in Section 2.5!).

For a Student’s t distribution, we can prove that

• E[Y ] = µ;
• Var[Y ] = σ2 ν

ν − 2
.

Because of the mathematical format of the Student’s t distribution, it can be proved that the mean only
exists if ν > 1, and the variance only exists if ν > 2.

The Student’s t distribution was invented by William Sealy Gosset, who published a paper with its
derivation in 1908 under the pseudonym of “Student”, while being in secondment from his normal job at
the Guinness brewery in Dublin, in the Department of Statistical Science at UCL. His work concerned the
modelling of sampling variability for continuous, symmetric variables. He started by using a Normal model.
However, because his problem involved samples of small sizes (for example, the chemical properties of
barley where sample sizes might be as few as 3), this was not robust, i.e. it could not cope well with
outliers, or extreme observations, which were still likely to be obtained, just because of sampling variability
due to the small sample size.

The graph in Figure 2.8 shows the comparison between two Student’s t distributions (with µ = 0 and
σ = 1) with degrees of freedom equal to ν = 10 and ν = 2, (in red and green, respectively), against a
standard Normal distribution (again with µ = 0 and σ = 1).

As is possible to see, the lower the degrees of freedom, the “fatter” the tails of the Student’s t distribution,
in comparison to the Normal. This implies that the Student’s t model assigns higher density to values that
have larger deviations from the central tendency — this makes this model more “robust” to outliers or
extreme observations. As ν →∞, the Student’s t distribution quickly converges to the standard Normal
(note that ν = 10 is already producing a pretty good level of overlap between the red and blue curves).

It is possible to use R to sample values from the Student’s t distribution. For example, we can create a
graph similar to that of Figure 2.8 by typing the following command.

# Defines the range of the x-axis from -5 to 5 with increments of 0.01,
# i.e. -5.00, -4.99, -4.98,..., 4.97, 4.98, 4.99, 5.00
# Plots the density of a t(0,1,3) distribution (in R, the default is
# to assume mean=0 and var=1)

https://en.wikipedia.org/wiki/William_Sealy_Gosset
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Figure 2.8: Comparison between different Student’s t and Normal distributions

tibble(x=seq(-5,5,.01)) %>% ggplot(aes(x)) +
stat_function(
fun=dt,args=list(df=3),lwd=1.1)

)

Other built-in functions such as rt(...), pt(...) and qt(...) ara also available and can be used —
more on this in Chapter 4.

2.5 Gamma and related distributions

Gamma distributions form a flexible and mathematically convenient class for continuous quantities
constrained to be positive. Then Y ∼ Gamma(a, b) represents a Gamma distribution with properties:

p(y | a, b) = ba

Γ (a)
ya−1 e−by; −∞ < y <∞; a, b > 0 (2.6)

and

E[Y ] =
a

b

V[Y ] =
a

b2
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The parameter a is called the shape, while b is called the rate of the Gamma distribution. Alternative
parameterisations exist in terms of the parameters (a, c), where c = 1/b is called the scale — but note
that, in this case, the form of the density in Equation 2.6 needs to be re-written accordingly!

One of the typical uses of the Gamma distribution is to model sampling variability in observed costs,
associated with a sample of patients (you will see this extensively, if you take STAT0019). Other examples
involve time-to-event models (e.g. to investigate how long before some event of interest occurs)

The general form of the Gamma distribution includes as special cases several other important distributions.
Figure 2.9 shows a few examples of different Gamma distributions, upon varying the two parameters a
and b. As is possible to see, for specific choices of the parameters, we retrieve other distributions, related
to the Gamma. Some important examples of such cases are discussed below.
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Figure 2.9: Some examples of Gamma distributions upon varying the parameters a and b. For different
choices of the parameters, the Gamma distribution can give rise to other distributions, including the
Exponential and the Chi-squared

2.5.1 Exponential

The Exponential distribution is obtained when we set a = 1, i.e.

Y ∼ Gamma(1, b) ≡ Exponential(b). (2.7)

The Exponential distribution is sometimes used as model for sampling variability in times until an event of
interest happens (e.g. time until a patient dies of a given disease). One major limitation of the Exponential
model is however that it is only characterised by a single parameter b, which also determines the value of
the mean and variance as

• E[Y ] =
1
b

;
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• Var[Y ] =
1
b2 .

For this reason, the Exponential model is often too rigid and cannot represent well variations across a
wide range of values for the variable y.

2.5.2 Chi-squared

The Chi-squared distribution (sometimes indicated using the Greek letter notation χ2) is obtained from
a Gamma distribution in which a = ν/2 and b = 1/2, i.e.

Y ∼ Gamma
(
ν

2
,

1
2

)
≡ Chi-squared(ν). (2.8)

Using the properties of the Gamma distribution, it is trivial to derive that if Y ∼ Chi-squared(ν), then

• E[Y ] =
ν/2
1/2

= ν;

• Var[Y ] =
ν/2
1/22 = 2ν.

A useful piece of distribution theory is that if Y1, . . . , Yn
iid∼ Normal(µ, σ2) then the sample summaries are

Ȳ =
1
n

n∑
i=1

Yi and S2 =
1

n− 1

n∑
i=1

(Yi − Ȳ )2

(recall Section 1.6) and it can be proved that

(n− 1)
S2

σ2 ∼ Chi-squared(n− 1) and that
(Ȳ − µ)
(S/
√
n)
∼ t(0, 1, n− 1). (2.9)

In addition, in a 1900 paper, Karl Pearson1 also proved that if Y1, . . . , Yn are a set of observations and
E1, . . . , En are the corresponding expected values from those observations (given a particular data
generating process assumed to underlie the collection of the observations), then

n∑
i=1

(Yi − Ei)2

Ei
∼ Chi-squared(n− 1). (2.10)

We will use these results extensively in Chapter 4, in the context of hypothesis testing.

2.6 Other distributions

Probability calculus as taught in Statistical courses often concentrates on a small number of probabil-
ity distributions, e.g. those mentioned above. But there are of course many more possibilities. Which

1 Karl Pearson was a controversial figure. He was the founder of the Department of Applied Statistics (later renamed to
Department of Statistical Science) at UCL in 1911, the first ever department of Statistics in any academic institutions.
During his academic career, he has provided enormous and important contributions to the development of statistical
theory and was widely regarded as the leading statistician in his time. However, he was sadly also a proponent of
eugenics, a discipline that aimed at improving the genetic quality of a human population by excluding certain
genetic groups judged to be inferior, and promoting other genetic groups judged to be superior. UCL has recently
launched an inquiry into the history of eugenics at the university, which will also deliver recommendations on
how to manage its current naming of spaces and buildings after prominent eugenicists.

https://en.wikipedia.org/wiki/Karl_Pearson
https://www.ucl.ac.uk/provost/inquiry-history-eugenics-ucl
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distribution to use to reflect assumptions about the underlying data generating process and sampling
variability (or indeed epistemic uncertainty about unobservable quantities — more on this in STAT0019)
is a matter of substantive knowledge of the problem. And in reality, it becomes as much an art as it is a
science, which requires experience as well as expertise.

Additional distributions that you are likely to encounter in STAT0014, STAT0015 and STAT0019 include
the Uniform, log-Normal, Weibull, Gompertz, Beta, Multinomial, Dirichlet and Fisher’s F distributions.
Good compendia of probability distributions are presented in several textbooks, including Spiegelhalter,
Abrams, and Myles (2004) and Lunn et al. (2012)

The graph in Figure 2.10 shows a graphical representation of the relationships among a large number
of probability distributions. As is possible to see, there are many more choices than the simple few
showed above. And interestingly, in many cases, the distributions tend to show close mathematical
connections (for instance one distribution may be obtained as a special case of another, just like for the
Exponential/Gamma). More details are given in Leemis and McQueston (2008).
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Figure 2.10: A graphical representation of the relationships among a (non-exhaustive) set of univariate
probability distributions. Source: Leemis and McQueston (2008).
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Parameter estimation: doing Statistics

As mentioned earlier, in a nutshell the problem of statistical inference consists in

1. Obtaining a sample of observations y = (y1, . . . , yn) from a population of interest. The process with
which the data become observed is subject to sampling variability — you get to see only one of the
many possible samples that could be obtained by extracting a number n of units that is (typically)
much smaller than the total size of the population N .

2. Characterise the sampling variability using a suitable probability distribution p(y | θ), defined as a
function of a set of model parameters, θ, to describe the data generating process.

3. Use the observed data y = (y1, . . . , yn) to learn about the unobservable population features described
by the model parameters.

Interestingly (and somewhat confusingly) not even statisticians have agreed on a single way in which
this process should be carried out. In fact, there are at least three main philosophical approaches to the
problem of statistical inference.

3.1 Point estimates

3.1.1 The Bayesian approach

The Bayesian approach (which is the topic of STAT0019) is historically the first to have been developed.
The original ideas and the basic structure date back to the publication of an essay by Reverend Thomas
Bayes (Bayes 1763), an English non-conformist minister, after whom the whole approach is named.

A Bayesian model specifies a full probability distribution to describe uncertainty. This applies to data,
which are subject to sampling variability, as well as to parameters (or hypotheses), which are typically
unobservable and thus are subject to epistemic uncertainty (e.g. the experimenter’s imperfect knowledge
about their value) and even future, yet unobserved realisations of the observable variables (Gelman et al.
2013).

As a consequence, probability is used in the Bayesian framework to assess any form of imperfect information
or knowledge. Thus, before even seeing the data, the experimenter needs to identify a suitable probability
distribution to describe the overall uncertainty about the data y and the parameters θ. We generally
indicate this as p(y,θ). Using the basic rules of probability, it is always possible to factorise a joint
distribution as the product of a marginal and a conditional distribution (you will see this again if you
take STAT0019). For instance, we could re-write p(y,θ) as the product of the marginal distribution for
the parameters p(θ) and the conditional distribution for the data, given the parameters p(y | θ). But in
exactly the same fashion, one could also re-express the joint distribution as the product of the marginal
distribution for the data p(y) and the conditional distribution for the parameters given the data p(θ | y).

https://en.wikipedia.org/wiki/Thomas_Bayes
https://en.wikipedia.org/wiki/Thomas_Bayes
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Consequently,
p(y,θ) = p(θ)p(y | θ) = p(y)p(θ | y)

from which Bayes’ Theorem follows in a straightforward way:

p(θ | y) = p(θ)p(y | θ)
p(y)

. (3.1)

While mathematically incontrovertible, Bayes’ Theorem has deeper philosophical implications, which
have led to heated debates, within and without the field of Statistics. In fact, the qualitative implications
of this construction are that, if we are willing to describe our uncertainty on the parameters before seeing
the current data through a probability distribution, then we can update this uncertainty by means of the
evidence provided by the data into a posterior probability, the left hand side of Equation 3.1. This allows
us to make inference in terms of direct probabilistic statements.

In all but trivial models, Equation 3.1 also presents some computational challenges because it is often
very hard or even impossible to compute the ratio on the right hand side analytically. Consequently, until
the 1990s the practical implementation of Bayesian models has been hampered by this problem. The
widespread availability of cheap computing as well as the development of suitable clever methods for
simulations (e.g. Markov Chain Monte Carlo, or MCMC, which you will encounter extensively if you take
STAT0019) have helped overcome these problems and make Bayesian analysis very popular in several
research areas, including economic evaluation of health care interventions and adaptive clinical trial
designs.

Leaving all the technicalities aside (which you will encounter in more details if you take STAT0019),
Bayesian inference proceeds by using the following scheme.

1. Define a “prior” distribution p(θ) to describe the current uncertainty on the model parameters. This
represents the knowledge before the data y become available.

2. Observe data y, whose sampling variability is modelled using p(y | θ).
3. Apply (an approximation to the exact computation intrinsic in) Bayes’ Theorem of Equation 3.1 to

compute the “posterior” distribution p(θ | y). This distribution represents the “revised” or “updated”
level of uncertainty on the parameters θ, after the data y have become available.

Suppose we consider a simple case where the data are R ∼ Binomial(θ, n), with n = 13 and we have
observed r = 9 successes. We want to make inference on the parameter θ. Figure 3.1 shows an example
of Bayesian inference in action (we will dispense with all the difficult technical points here and only
concentrate on the interpretation).

Imagine that you are willing to specify the current level of uncertainty about θ using the black curve
(labelled as “Prior”). This essentially implies that, before seeing any other data, you believe reasonable to
assume that the most likely value for θ is around 0.4 and most likely it will be included in the interval (0.2
– 0.6). Values below 0.2 or above 0.6 are associated with increasingly smaller values of the probability
mass as you move away from the mode (0.4) and towards the extremes (0 and 1). Technically, we could
use a Beta(9.2,13.8) distribution to encode these assumptions (but, again, this is only a technicality and
you will see more on this if you take STAT0019).

The red curve is a representation of the contribution brought by the observed data. In fact, this is
the likelihood function (that is described in Section 3.1.2). Again, leaving all the details aside, the
interpretation of the red curve is that, intuitively, because we have observed r = 9 successes over n = 13
individuals, the data seem to suggest that the “true” underlying probability of success may be higher than
we originally thought (the red curve has a mode around 0.69231).

Finally, Bayesian inference is obtained by inspecting the blue curve, showing the posterior distribution.
This is typically a compromise between the prior knowledge and the evidence provided by the data. As
mentioned above, technically this can be complex, or even impossible to determine analytically — and in
fact, most often we resort to simulation algorithms to obtain a suitable approximation.
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Figure 3.1: An (extremely simplified!) example of Bayesian inference on a probability θ for a Binomial
sampling distribution model, with r = 9 observed successes out of n = 13 individuals

In general, once the whole posterior distribution is available, it is then possible to describe it using
suitable summaries For example, the usual point estimate is the mean of the posterior distribution. In
the case of Figure 3.1, because the blue curve is reasonably symmetrical, the mean corresponds with the
mode (the point where the distribution is highest), which in this case can be computed as 0.5056. So we
initially thought that the probability that a random individual would experience the event under study
was centered around the prior mean 0.4000 and we have revised this to the posterior summary 0.5056,
after observing 9 individuals in a sample of 13 experiencing the event.

3.1.2 The Likelihood approach

This approach to statistical inference is almost single-handledly developed by Ronald Fisher1. The main
ideas (which you will encounter extensively in STAT0015 and STAT0016) underlying Fisher’s theory can
be somewhat roughly summarised as follows.

1. Unlike in the Bayesian approach, Fisher considers parameters as fixed (although unknown) quantities.
As such, we cannot model our uncertainty over the true underlying value of θ using a probability
distribution p(θ).

2. The only randomness in a statistical analysis is generated by the sampling variability associated with
the observed data. We still want to use the data to learn about the world (as described by our model,

1 Much as Karl Pearson, Fisher was also a very controversial figure. His brilliance as a scientist is undisputed and he
has made contributions to many disciplines, including Statistics, Biology and Genetics. On the other hand, his
views were also close to eugenics — in fact, he took the post of head of the Department of eugenics at UCL, in
1933. He was also heavily criticised for his views on the link between smoking and lung cancer, which he strongly
denied in favour of some underlying genetic features, despite the evidence that was already at the time becoming
substantial.

https://en.wikipedia.org/wiki/Ronald_Fisher
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indexed by the parameters θ) and to do so, the only thing we need to consider is the likelihood
function.

( Known, unknown, fixed. . .

Notice that in regards to point 1. above, also from the Bayesian point of view parameters may be
fixed quantities: it is possible that the “true” proportion of males in the world is an unmutable
constant — we just do not (and cannot!) know its true value with absolute certainty. The Bayesian
way to deal with this epistemic uncertainty is to consider θ as a random variable and describe current
uncertainty with the prior.

As shown in Chapter 2, we can model sampling variability using probability distributions. For example, in
the case of the Binomial distribution, this is defined as

p(r | θ, n) =
(
n
r

)
θr (1− θ)n−r

— recall Equation 2.1. The expression above is a function of the observed data, given the values of the
parameters (as should be clear from Chapter 2).

However, what we really want to do when making inference is not so much fixing the value for θ and
computing probabilities for possible values of r — rather we want to use the observed value of r to
learn what the most plausible value of θ is in the “true”, underlying DGP. Thus, Fisher’s main idea was
to create a different kind of function, which varied with the parameters, but depended on the observed
(fixed) r. He called this the likelihood function and defined it as the same equation used for the sampling
variability associated with the model — except that the fixed and varying arguments are flipped around.
For example, in the Binomial case, the likelihood function is

L(θ | r) = θr(1− θ)(n−r). (3.2)

Equation 3.2 only takes the terms in the Binomial sampling distribution that depend directly on the model

parameter. For instance, the Binomial coefficient
(
n
r

)
is irrelevant because it does not include θ and

thus it is discarded in forming the likelihood.

Panel (a) in Figure 3.2 shows the Binomial sampling distribution for a fixed value of θ = 0.3. If that was
the “true”, underlying value of the probability that a random individual drawn from the population of
interest experiences the event of interest, then we would expect 4 successes out of n = 13 individuals
sampled to be the most probable outcome. Observing 9 successes would be a somewhat unlikely event:
we can use R to compute this probability as dbinom(x=9,size=13,prob=0.3)=0.00338.

Panel (b) presents the likelihood function for three possible observed samples. The black curve corresponds
to the analysis when r = 2, n = 13, the red curve is drawn for r = 4, n = 13 and the blue curve is derived
in the case where r = 9 and n = 13 — notice that in the interest of comparability, we present here the
rescaled likelihood functions, i.e. L(θ | r)/max [L(θ | r)], so that the range on the y−axis goes from 0 to
1.

The interpretation of the likelihood function is that it describes “how likely” each possible value of the
parameter is, given the observed data. For example, in the case of the black curve, the most likely value of
the parameter after observing r = 2 successes out of n = 13 individuals is θ̂ = 0.154, which is indicated
by the black dashed line. For r = 4, then θ̂ = 0.308 (the red dashed line) and for r = 9 then θ̂ = 0.692
(the blue dashed line).
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(a) Binomial sampling distribution p(r | θ = 0.3)
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(b) Likelihood function L(θ | r = 2, 4, 9)

Figure 3.2: Binomial sampling distribution compared to three likelihood functions for different observed
values of the data r. Each likelihood function is rescaled to have a maximum value at 1, for comparability.
Panel (a) shows the sampling distribution for θ = 0.3, while panel (b) shows the likelihood function for
three possible observed values of r = 2, 4, 9 (in black, red and blue respectively)

( Important

Notice that the language we have used here is purposedly pedantic and focuses on the concept
of “how likely”, as opposed to “how probable”. This is because the likelihood function is not a
probability distribution (technically, the reason for this is that the likelihood function does not
integrate to 1, i.e. the area under the curve representing the likelihood function is not equal to 1,
which is a necessary condition for a mathematical function to represent a probability distribution).
Fisher was very clear on this — that is why he coined the phrasing “likelihood function”. But the
concepts are sometimes conflated, so it is important to be careful on the distinction.

As seems sensible, the greater the number of observed successes, the higher the most likely value of
the underlying true probability of success — if θ is indeed very large, then most people will experience
the event and so we will tend to observe large values for r in any given sample. So, by and large, the
simplified process presented here describes how inference is performed in this setting:

1. we define a sampling distribution to describe variability in the observed data;
2. we turn this into a likelihood function for the model parameter(s); and
3. we determine the value that is associated with the highest likelihood (again: not probability!).

This is used as the best estimate — and it is referred to as the maximum likelihood estimator (MLE).
Mathematically, this last step amounts to maximising the likelihood function. Technically this is done by
finding the value for which the first derivatives of the function is equal to 0 and then checking that the
second derivative of the function is negative to ensure that that point is indeed a maximum.

In order to perform this analytically (i.e. for a general value of the random variable R, rather than
the specific observed value r), it is usually easier to work on the log scale, i.e. trying to maximise the
log-likelihood `(θ) = logL(θ | R). Figure 3.3 shows that both functions are maximised by the same point
on the x−axis.

Thus, if we consider the log-likelihood for the Binomial example, we have

`(θ) = logL(θ | R) = R log θ + (n−R) log(1− θ)
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Figure 3.3: Likelihood function (in blue, with values on the y−axis on the left hand side) and Log-
likelihood function (in red, with values on the y−axis on the right hand side) for the Binomial example
with r = 2. Both functions are maximised at the same point along the x−axis

and so, making use of the properties that: i. the derivative of a sum is the sum of the derivatives; ii. for a
variable x, the derivative of log(x) is 1

x ; iii. for a variable x, the derivative of log(1− x) is − 1
1−x ; we can

compute

First derivative of `(θ) = `′(θ) =
R

θ
− n−R

1− θ
. (3.3)

Setting this to 0 and solving for θ, i.e. finding the value θ̂ in correspondence of which the first derivative
is 0, gives

R

θ̂
− n−R

1− θ̂
= 0 ⇒ (1− θ̂)R− θ̂(n−R) = 0

⇒ R− θ̂R− θ̂n + θ̂R = 0

⇒ θ̂ =
R

n
=

n∑
i=1

Yi
n
= Ȳ ,

i.e. the sample mean of the n individual Bernoulli variables (recall Section 2.1).

If we also compute the second derivative, i.e. the derivative of Equation 3.3 and check that it is negative
(which in this case it is) to ensure that θ̂ is indeed a maximum point, then we have obtained a functional
form for the MLE. And we can use this to compute its value for the observed sample, which in this case is

θ̂ = ȳ =
r

n
=

2
13
= 0.154, which can be used as the point estimate for the parameter of interest.

In many cases the derivatives can be computed analytically, which means we can find the MLE as a function
of the general random variable R and then compute the value in correspondence of the observed value r,
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as in the case above. However, there may be cases where the resulting likelihood function is complex
and either difficult or even impossible to differentiate (i.e. compute the derivatives). In these cases, most
likely, you will be using a computer to maximise the likelihood function numerically. For example, R has
several built-in functions to perform numerical optimisation, for instance optim or optimise, which can
be used to that effect. The following code implements this calculation using optimise.

# Defines the likelihood function as a R function
Lik=function(theta,r,n) {

# The function depends on three arguments:
# 'theta' is a vector of values specifying the range of the parameter
# 'r' is the observed number of successes
# 'n' is the observed sample size
thetaˆr*(1-theta)ˆ(n-r)

}
# Use 'optimise' to obtain the MLE for w=2 and n=13 in the interval (0,1),
# ie the range of theta
optimise(Lik,r=2,n=13,interval=c(0,1),maximum=TRUE)

$maximum
[1] 0.1538463

$objective
[1] 0.003768044

Firstly, we code up the likelihood function of Equation 3.2 in the function Lik, which takes as arguments
the parameter theta, as well as the observed data r and n. The we run optimise by passing as arguments
the function we want to maximise (Lik), the values for the data (r and n), the interval over which
we want to maximise the function (interval=c(0,1), which represents the range of θ) and the option
maximum=TRUE, which instructs R to compute the maximum (instead of the minimum of the function). The
results is stored in the object maximum, which has a value of 0.1538463, which is essentially identical to
the analytic value 0.1538462 (the differences are due to the approximation in the numerical optimisation
procedure performed through optimise).

3.1.3 The Frequentist approach

The third major approach to statistical inference is termed frequentist and it was built on major contri-
butions by Jerzy Neyman and Egon Pearson, in the 1930s2.

As in the likelihood approach, parameters are considered to be unknown, but fixed quantities. However,
the frequentist school does not attempt to make inference for a specific set of data, but rather it considers
and evaluates inference procedures (e.g. the way in which an estimator is defined). Inference consists
in the probabilistic assessment of the properties of the procedure, according to suitably defined criteria
(more on this later).

In a nutshell, the frequentist approach defines a statistic, i.e. a function f(Y ) of the observed data, based
on its “optimality” according to the long-run performance. In other words, we want to use as estimator
for a given parameter a function of the observed data that, if we were able to repeat the experiment over
and over under the same conditions would guarantee that, in the long-run, we would be certain of some
properties.

2 Jerzy Neyman (a Polish mathematician and statistician) and Egon Pearson (the son of Karl Pearson — see
Section 2.5.2) developed most of the theory underlying the main frequentist ideas while the former was visiting
the Department of Statistical Science at UCL, where the latter had taken over his father as head.

https://en.wikipedia.org/wiki/Jerzy_Neyman
https://en.wikipedia.org/wiki/Egon_Pearson
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à Long-run/short-life

The “long-run” argument underpins the frequentist approach and all the theory developed by
Neyman and Pearson. This was very popular at the time, although not universally advocated.
And criticism of the frequentist philosophy was not confined to the field of Statistics. The British
economist John Maynard Keynes is quoted to have dismissed it because “. . . in the long run, we are
all dead” (Keynes 1923).

For instance, let us consider a Bernoulli sample of n individuals Y = (Y1, . . . , Yn)
iid∼ Bernoulli(θ) and

the two possible estimators

f1(Y ) =
n∑
i=1

Yi
n
= Ȳ and f2(Y ) =

Med(Y )
n

.

Here, f1(Y ) is the sample mean, where f2(Y ) is computed as the median of the data Y divided by the
sample size n.

Now, imagine that we knew with no uncertainty that the true value of the underlying probability of
success is θ = 0.3 — of course, in reality we cannot know this and to give our best estimate for its value is
in fact the objective of the analysis. But if we did know, then we could imagine a simulation process that
aims at mimicking would could happen if we were to repeat a very large number of times the experiment
in which we collect data on n = 13 individuals and record how many experience the event.

In R we could do this by using the following code

# Sets the 'seed' so that we always get the same results
set.seed(12)
# Sets the "true" value of the probability of success (assumed known)
theta=0.3
# Sets the sample size in each repeated experiment
n=13
# Sets the number of simulations
nsim=1000
# Defines a matrix "samples" with nsim rows and n columns,
# initially with "NA" (empty) values
samples=matrix(NA,nsim,n)
# Then creates a loop to fill each row of the matrix "samples" with n
# simulated values from a Binomial(theta, 1) (i.e. we simulate all the
# individual Bernoulli data Y_i)
for (i in 1:nrow(samples)) {

samples[i,]=rbinom(n,1,theta)
}
head(samples)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 0 1 1 0 0 0 0 0 0 0 0 1 0
[2,] 0 0 0 0 0 0 0 0 1 0 1 0 0
[3,] 0 0 0 0 0 1 1 1 0 1 0 1 0
[4,] 0 0 0 1 0 1 0 0 0 0 1 0 0
[5,] 0 0 0 1 0 0 0 1 1 0 1 0 0
[6,] 0 0 1 0 1 0 1 0 0 0 1 1 1

https://en.wikipedia.org/wiki/John_Maynard_Keynes
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(the command head(samples) shows the first few rows of the matrix of simulations, where 0 indicates
that we have simulated a “failure” and 1 indicates a “success”).

For each simulated dataset (=replicate of the experiment), we can record the observed value of the two
statistics f1(y) and f2(y). Figure 3.4 shows the output for the first 20 replicates of the experiments: in each
of the 20 rows in the graph, the black dots represent the n = 13 simulated values (notice that, because we
are simulating from a Bernoulli, then the only possible outcomes are 0=“failure” and 1=“success”); the
red diamonds are the observed value of the sample mean f1(y); and the blue squares are the observed
values of the rescaled median f2(y).
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Figure 3.4: A graphical representation of a simulation exercise to describe repeated experiments from a
Binomial case with n = 13 and θ = 0.3. For each of the 20 simulations presented, the black dots indicate
the simulated Bernoulli outcomes y1, . . . , yn; the red diamonds indicate the sample means ȳ and the blue

dots are the rescaled sample medians
Med(y)

n
. The vertical dashed line indicates the true value for the

parameter θ = 0.3

The frequentist approach makes use of the fact that, because they are functions of the observed data
(which are subject to sampling variability), the statistics f1(Y ) and f2(Y ) also are subject to sampling
variability — intuitively, this is expressed by the different values that we could observe for them, if we
were able to do the experiment over and over again (as in Figure 3.4). Using the nsim simulations stored
in the matrix sample, we could investigate the sampling distributions of f1(Y ) and f2(Y ), for example
using the following commands

tibble(x=samples %>% apply(1,mean)) %>%
ggplot(aes(x)) + geom_histogram(bins=10,fill="grey",col="black") +
theme_bw() + xlab("") + ylab("Density") +



44 3 Parameter estimation: doing Statistics

geom_segment(
aes(x=0.3,y=-Inf,xend=0.3,yend=Inf),
linetype="dashed",lwd=0.85

)

tibble(x=samples %>% apply(1,median)/n) %>%
ggplot(aes(x)) + geom_histogram(bins=10,fill="grey",col="black") +
theme_bw() + xlab("") + ylab("Density")
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Figure 3.5: Histograms for the sampling distributions of the two statistics f1(Y ) and f2(Y )

(the built-in function apply(matrix,1,FUN) takes all the rows of the first argument matrix and applies the
function FUN to each of them, returning a vector of summaries, e.g. the mean or the median). Figure 3.5
shows histograms for the sampling distributions of f1(Y ) and f2(Y ), while Table 3.1 reports some
summaries, including the mean, standard deviation, 2.5%, 50% (median) and 97.5% percentiles of the
sampling distributions.

Table 3.1: Summary of the sampling distributions for the two statistics

Mean SD 2.5% Median 97.5%

f1(Y ) = Ȳ 0.3030 0.1316 0.0769 0.3077 0.6154
f2(Y ) = Med(Y )/n 0.0055 0.0199 0.0000 0.0000 0.0769

As is possible to see, the two estimators have rather different characteristics.

1. The rescaled sample median f2(Y ) has a much smaller standard deviation. However, this is only due
the fact that its possible values are 0 or 0.0769 only and thus there is much less possible variation
in the observed data, which leads to a smaller variance. If we consider the mean over the sampling
distribution, the value is 0.00554, which is in fact very far from the true value θ = 0.3.

2. Conversely, the distribution of the sample mean f1(Y ) is centered around the “true” value for θ. This
is a very important property to a frequentist — it is called unbiasedness and a statistic having this
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property is called an unbiased estimator (for a given parameter). Formally, we define an unbiased
estimator f(Y ) as one for which E[f(Y )] = θ.

The reason why unbiasedness is so important to a frequentist is that it encapsulate perfectly the concept of
long-run optimality: for any given sample, we have no reassurance that the unbiased statistic would give
us a value equal, or even close, to the true underlying parameter. In fact, looking at Figure 3.4, none of
the observed values for f1(Y ) is equal to the true value for θ = 0.3. However, because of its unbiasedness,
we can say that in the log-run, on average we would “get it right” by using f1(Y ) to estimate θ.

( Unbiasedness (et al)

Unbiasedness is only one of the frequentist properties — arguably, the most compelling from a
frequentist perspective and possibly one of the easiest to verify empirically (and, often, analytically).
There are however many others, including:
1. Bias-variance trade-off : we would consider as optimal an estimator with little (or no) bias; but

we would also value ones with small variance (i.e. more precision in the estimate), So when
choosing between two estimators, we may prefer one with very little bias and small variance to
one that is unbiased but with large variance;

2. Consistency: we would like an estimator to become more and more precise and less and less
biased as we collect more data (technically, when n→∞).

3. Efficiency: as the sample size increases indefinitely (n→∞), we expect an estimator to become
increasingly precise (i.e. its variance to reduce to 0, in the limit).

3.1.4 You’re my one and only (theory). . . ?

Interestingly, as it happens, the MLE for a given parameter does generally have all the good frequentist
properties. For this reason, we can effectively be frequentist and select the MLE as our optimal estimator,
which has contributed to some people presenting and using these two approaches as a combined and
unified theory. In fact, Fisher on the one hand and Neyman and Pearson on the other saw them as two
irreconciliable schools of thought and have spent many years arguing vehemently with each other — so
much so that when Fisher moved to UCL, a new special chair was created for him, to avoid him being in
the same department as Pearson.3

What the two approaches do have in common, as mentioned above, is the fact that both take a non-
Bayesian stance on how to deal with the model parameters. In both cases, parameters are considered
as fixed but unknown quantities, which govern the DGP. In order to learn about the true, underlying
value of the parameters, we can use suitable statistics: in the case of Fisher’s theory, the MLE because it is
based on the likelihood function (which contains all the information that the sample can provide on the
parameters); in the case of the frequentist approach, again most often the MLE, because it upholds all
the good frequentist properties. But you should be aware of the fundamental distinction in these two
approaches.

3.2 Interval estimation

We have just seen how different approaches to statistical inference produce point estimates for a parameter
of interest. This is often a very good starting point — and sometimes it is the only summary reported,
e.g. in non-scientific publications (such as in the mainstream media, as shown in Figure 3.6).

3 During his early career, Fisher had also heated arguments with Karl Pearson, whom he started off admiring very
much, but with whom he fell out over a rejection of one of Fisher’s papers in Biometrika, the scientific journal
edited by Karl Pearson.

https://www.youtube.com/watch?v=v6Js-l51kMg
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Figure 3.6: An example or inappropriate reporting of statistical quantities only as point estimates in the
mainstream media
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In reality, the point estimate is only likely to be indicative of what the true value of the underlying
parameters could be — because of a combination of the sampling variability (that implies we can only
learn so much from the observed data, unless n→∞, which it never is. . . ) and the intrinsic epistemic
uncertainty that we have on the parameter.

For this reason, it is a good idea to provide measures of interval estimate to complement the point
estimate for a given (set of) parameter(s).

3.2.1 Bayesian approach

From a Bayesian point of view, in theory, interval estimate does not pose any additional complication.
Once the full posterior probability distribution for the parameter has been computed, then we can simply
present any summary we want. As seen in Section 3.1.1, the point estimate can be taken as the mean or
the mode of the posterior. But we can also simply compute intervals that express directly probabilistic
statements about the values of the parameters.

For example, we can prove that the posterior distribution for the Binomial example shown in Section 3.1.1
is a Beta(18.2, 17.8)— again the technical details are not important here and you will see them if you
take STAT0019. We can use this information to compute analytically quantities such as the value θU , the
point in the parameter space (defined in this case as the interval [0; 1], because θ represents a probability)
in correspondence of which Pr(θ < θU | y) = 0.95. With the current specification, this is 0.6408 — that
is we can estimate that the posterior probability that θ is less than 0.6408 is exactly 95%.

Sometimes we will be able to make this or similar calculations analytically (which technically means we
can solve an integral) and we can make this computations in R for instance using the command

q_U=qbeta(p=0.95,shape1=18.2,shape2=17.8)

which returns the exact value 0.640801.

A Bayesian interval is essentially computed using a similar process as the interval in correspondence of
which a certain amount of probability lies:

Bayesian 95% interval = [θL; θU ] such that Pr(θL ≤ θ ≤ θU | y) = 0.95.

Generally speaking we can use a simulation approach (which is essentially what MCMC does) and

1. Simulate a large number of values from the posterior distribution
2. Use the simulated values to compute tail-area probabilities and obtain the relevant interval.

For example, we can use the following R code to compute the 95% interval for the example above.

# Simulates 10000 values from the posterior distribution Beta(18.2,17.8)
theta=rbeta(n=10000,shape1=18.2,shape2=17.8)
# Computes the 2.5% quantile (that is the point leaving an area of 2.5% to its left)
q_L=quantile(theta,0.025)
# Computes the 97.5% quantile (that is the point leaving an area of 97.5% to its left)
q_U=quantile(theta,0.975)
# Displays the resulting interval estimate
c(q_L,q_U)

2.5% 97.5%
0.3436120 0.6679136
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The result is that we compute that 95% of the posterior distribution lies in the interval [0.344; 0.668], or,
in other words, that the probability that the true parameter is contained between 0.344 and 0.668, given
the model assumptions and the observed data is exactly 95%.
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Figure 3.7: Posterior distribution for the Binomial example. The dark horizontal line below the distribution
indicate the 95% interval estimate

Figure 3.7 shows again the posterior probability distribution; the dark horizontal line at the bottom of
the histogram indicates the 95% interval.

à Bayesian intervals

As mentioned above, theoretically, summarising the posterior distribution through an interval does
not pose any additional problem, once the target distribution is available. The main problem is, of
course, that we need to know what the posterior is before we can manipulate it — and this is the
main point about doing simulations, e.g. using MCMC algorithms. This is not trivial, though and
thus requires some specific training.
In addition, the procedure shown above to compute a Bayesian interval delivers what is often called
a central interval — that is the one that leaves equal amount of area to its right and to its left. It
does work very well if the underlying distribution is reasonably symmetric, but it may not be the
best option when the distribution is skewed or “multimodal” (e.g. it has several “humps”, like a
camel). In those cases, we can still compute suitable Bayesian intervals, based on slightly different
theory and computations (these are often called “High Posterior Density”, or HPD intervals). The
details are not important here.
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3.2.2 Likelihood and frequentist approach

As mentioned in Section 3.1.2 and Section 3.1.3, the likelihood and frequentist approaches are not, in
fact, a unified theory. Nevertheless, because effectively the MLE is often the “best” frequentist estimator,
we can present the methodology in a compacted way.

The basic idea is that, as mentioned above, the MLE is a statistic, i.e. a function f(Y ) of the observed data
and, as such, is associated with a sampling distribution. If we are able to determine what this sampling
distribution is, then we can use it to compute tail-area probabilities that can be used to derive interval
estimates.

For example, for a generic statistic f(Y ), we can prove that

Z =
f(Y )− E[f(Y )]√

Var[f(Y )]
∼ Normal(0, 1), (3.4)

at least approximately, as the sample size n→∞ (which in practical terms, simply means that n is “large
enough”. A very general rule of thumb is that n > 30 suffices for this result to hold).

We have seen before that the MLE for the probability of success θ in the n independent Bernoulli case is

the sample mean f1(Y ) = Ȳ =
n∑
i=1

Yi
n
=
R

n
, where Yi

iid∼ Bernoulli(θ). We can prove that the sampling

distribution for f1(Y ) is approximately a Normal with mean θ (which makes f1(Y ) an unbiased estimator)
and variance σ2/n, where σ2 = θ(1− θ). From this we can also derive that the standardised version of
f1(Y ), obtained by considering f1(Y ) minus its expected value and divided by its standard deviation, is

Ȳ − θ√
θ(1− θ)/n

∼ Normal(0, 1). (3.5)

We have seen in Figure 2.7 that for a Normal(0,1), the point 1.96 is the one leaving 97.5% of the
distribution to its left. Similarly, we can prove that the point -1.96 leaves 2.5% to its left and thus the
interval [−1.96; 1.96] includes 95% of the probability

Pr

(
−1.96 ≤ Ȳ − θ√

θ(1− θ)/n
≤ 1.96

)
≈ 0.95

(the approximation comes about because: i. the distribution of f1(Y ) is only approximately Normal;
and ii. we are using the rounded value 1.96 instead of the exact quantile of the Normal distribution).
Re-arranging the terms inside the probability statement, we get

Pr

(
θ − 1.96

√
θ(1− θ)

n
≤ Ȳ ≤ θ + 1.96

√
θ(1− θ)

n

)
≈ 0.95. (3.6)

At this point, we need a further layer of approximation: we do not know the true value of the parameter θ
— only its estimate θ̂ (e.g. the MLE) and so we can compute the 95% confidence interval for the original
statistic Ȳ as θ̂ − 1.96

√
θ̂(1− θ̂)

n
; θ̂ + 1.96

√
θ̂(1− θ̂)

n

 . (3.7)
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( Probability of what?. . .

There is a subtle but crucial point in this argument. Equation 3.6 computes a probability. This
probability however is computed with respect to the sampling distribution of the statistic — not the
parameter θ. From the frequentist/likelihood point of view, this is perfectly fine — in fact neither
Neyman and Pearson, nor Fisher would want to compute a probability distribution directly for the
model parameters. To them, the parameters are just fixed quantities and so cannot be associated
with distributions. θ has a “true” value and so Pr(θ = true value) = 1 and Pr(θ 6= true value) = 0 —
we just do not know what the true value is.

Again in line with the long-run philosphy, the interpretation of a confidence interval is that if we were able
to replicate the experiment over and over again under the same conditions and each time we computed a
confidence interval according to the procedure in Equation 3.7, then, in the long-run, the resulting interval
would cover the true value of the unknown but fixed parameter 95% of the times. Figure 3.8 expands on
Figure 3.4, by including the 95% intervals computed using Equation 3.7, depicted as the blue horizontal
lines.
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Figure 3.8: Graphical representation of the concept of confidence interval. The black dots are the simulated
values for the observed Bernoulli data, in each of 20 replicates of the experiment. The red diamonds
indicate the computed sample mean for each replicate. The dashed vertical line is drawn in correspondence
of the “true” value of the parameter θ = 0.3. The blue lines indicate the 95% confidence intervals computed
using the procedure described above.

For 19 out of the 20 potential replicates of the experiments presented in Figure 3.8, the procedure for
computing the confidence interval succeeds in covering the true underlying value of θ = 0.3, shown as
the dashed vertical line.
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However, there is one potential replicate (experiment number 18) in which the procedure fails to cover
the true value of the parameter. This is not entirely surprising: the procedure for the confidence interval
“gets it right” 19/20 or 95% of the times.

And this is the meaning of the analysis based on the confidence interval: nothing to do to the uncertainty
about the true value of the parameter — as mentioned above, there is no such thing in the frequentist
paradigm. What we can evaluate is the long-run performance of the procedure.

In more general terms, building on Equation 3.4, considering a statistic θ̂ = f(Y ) used to estimate a
parameter θ and with sampling distribution described (at least approximately) by a Normal(θ, σ2/n), we
can derive a form of the 95% confidence interval as[

θ̂ − 1.96
σ√
n

; θ̂ + 1.96
σ√
n

]
. (3.8)

à Confidence intervals

To be precise, the idea of confidence intervals as presented above is central to the purely frequentist
approach — in fact the mathematical derivation is due to the work of Neyman, who wrote a
landmark paper on this topic in 1937, drawing on the work he had done with Egon Pearson at UCL.
The mathematical formulation in purely likelihood terms derives the interval estimates in a fairly
similar way, by considering the sampling distribution of the statistic f(Y ) (possibly approximated
by a Normal distribution) and then computing the interval asθ̂ − 1.96

1√
−`′′(θ̂)

; θ̂ + 1.96
1√
−`′′(θ̂)

 ,
where `′′(θ̂) is the second derivative of the log-likelihood, evaluated at the MLE θ̂. The quantity
−`′′(θ) is often referred to as the observed Fisher’s Information.
For all intents and purposes, often the two procedures tend to return the same numerical value for
the confidence interval.

Example 3.1 (Normal data; unknown mean, known variance). We now turn to a slightly more complex

(but extremely useful and used) example. Consider data y1, . . . , yn
iid∼ Normal(µ, σ2), e.g. the following

n = 30 observations.

[1] -3.899644 70.906300 64.799692 48.582441 42.830802 2.448935
[7] 18.350713 6.201232 -41.826326 -19.574827 7.668143 6.037137
[13] 58.216779 13.642063 25.834383 40.493779 19.744473 60.579431
[19] 22.770209 50.304467 -37.099194 14.960456 7.974603 3.912337
[25] 17.916688 87.621813 30.473627 10.823798 42.116799 13.358217

The parameters vector is thus θ = (µ, σ). However, imagine for now that we have full knowledge of the
population standard deviation, e.g. σ = 32. Thus, the only relevant parameter (for which we want to
make point and interval estimation) is the population mean, µ.

We can compute the MLE by considering the likelihood function. Recalling Equation 2.4, we can write
the Normal sampling distribution for n iid variables Y = (Y1, . . . , Yn) as the product of the individual
distributions for each Yi (this results comes about thanks to the assumption of independence), as
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p(Y | µ, σ) =
n∏
i=1

p(Yi | µ, σ) = p(Y1 | µ, σ)p(Y2 | µ, σ) · · · p(Yn | µ, σ)

=
1

(2πσ2)n/2
exp

(
−1

2

n∑
i=1

(Yi − µ)2

σ2

)
.

Thus, the likelihood function for µ, given (Y , σ) is

L(µ | Y , σ) = exp

(
−

n∑
i=1

(Yi − µ)2
)
, (3.9)

from which we can derive the log-likelihood

`(µ) = log

(
exp

(
−

n∑
i=1

(Yi − µ)2
))

= −
n∑
i=1

(Yi − µ)2.

Making use of the facts that: i. for a variable x and a constant a, the derivative of (a− x)2 is −2(a− x);
ii. the derivative of a sum is the sum of the derivatives; iii. nȲ =

∑n
i=1 Yi; and iv.

∑n
i=1 µ = nµ,

we can compute the first derivative

`′(µ) = −

(
−2

n∑
i=1

(Yi − µ)

)
= 2(nȲ − nµ) = 2n(Ȳ − µ). (3.10)

Setting this to 0 and solving for µ, we get

2n(Ȳ − µ) = 0 ⇒ 2nȲ = 2nµ

⇒ µ̂ = Ȳ .

Once again, the MLE for the population mean is the sample mean Ȳ . Numerically, given the sample above,
the MLE is ȳ = 22.872.

In order to compute the 95% confidence interval around this point estimate, we can make use of simple

probability calculus and prove that if n variables X1, . . . , Xn
iid∼ Normal(µ, σ2), then

n∑
i=1

Xi = X1 + . . . +Xn ∼ Normal(nµ, nσ2).

In addition, we can prove that for any constant a, if X ∼ Normal(µ, σ2), then aX ∼ Normal(aµ, a2σ2).

Putting these two results together implies that

Ȳ =
n∑
i=1

Yi
n
∼ Normal

(
µ,
σ2

n

)
, (3.11)

i.e. the sampling distribution of the sample mean is Normal with mean equal to the underlying population
mean (which makes it unbiased) and variance equal to the population variance σ2, rescaled by the sample
size n. We have already used this results when computing the confidence interval for the Bernoulli case
seen above.

In the present case, because we know that σ = 32 and n = 30 then
√

σ2

n =
√

34.13 = 5.84 and thus

Ȳ ∼ Normal(µ, 34.13). Consequently, using Equation 3.8, we can compute the 95% confidence interval
as
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Ȳ − 1.96

σ√
n

; Ȳ + 1.96
σ√
n

]
= [22.872− 1.96(5.84); 22.872 + 1.96(5.84)]

= [11.42; 34.323].

Example 3.2 (“Normal data; unknown mean and variance”). The case in Example 3.1 is obviously
unrealistic: it is fairly difficult to imagine that we know with absolute certainty the value of a population
parameter. More likely, we may observe data that we are willing to associate with some Normal sampling
distribution, without knowing the underlying “true” value for θ = (µ, σ2). We may still be mainly
interested in point and interval estimates for the population mean µ, but this time we consider the case
where also the population variance σ2 is unknown.

The first extra complexity is that now, when computing the likelihood function we have something that
depends on 2 parameters:

L(µ, σ | Y ) = σ−n exp

(
− 1

2σ2

n∑
i=1

(Yi − µ)2
)
.

The log-likelihood is

`(µ, σ) = log

(
(σ2)−n/2 exp

(
− 1

2σ2

n∑
i=1

(Yi − µ)2
))

= −n
2

logσ2 −
n∑
i=1

(Yi − µ)2

2σ2

and we now need to compute two fist derivatives: one with respect to µ and the other with respect to σ2.
These are

`′(µ) =
2

2σ2

n∑
i=1

(Yi − µ) (3.12)

`′(σ2) = − n

2σ2 +
n∑
i=1

(Yi − µ)2

2σ4 . (3.13)

Equation 3.12 is basically identical to Equation 3.10 and so the computation of `′(µ) is similar to
what shown in the case for know variance. As for Equation 3.13, we make use of the facts that: i.

1
σn = σ

−n = (σ2)−n/2; ii. for a variable x, the first derivative of logx is 1
x ; iii. for function f(x), the first

derivative of a
f(x) is the ratio [af

′
(x)]/f(x)2; and iv. the derivative of a sum is the sum of the derivatives.

Now, setting Equation 3.12 to 0 and solving for µ gives rise to

µ̂ = Ȳ

exactly as in the case for known variance of Example 3.1. Setting Equation 3.13 to 0 and solving for σ2

gives

− n

2σ2 +
n∑
i=1

(Yi − µ)2

2σ4 = 0 ⇒ −nσ2 +
n∑
i=1

(Yi − µ)2 = 0

⇒ σ2 =
n∑
i=1

(Yi − µ)2

n
.

Because we do not know the true value for µ, in order to materially compute the MLE estimator σ̂2 of σ2

we need to replace it with our best estimate, i.e. the MLE Ȳ and so the MLE estimate for σ2 is
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σ̂2 =
n∑
i=1

(Yi − Ȳ )2

n

The crucial part of the procedure shown in Section 3.2.2 to compute the 95% confidence interval is given
in Equation 3.4, which defines the sampling distribution for the statistic of interest. More specifically, for
f(Y ) = Ȳ as an estimator of the population mean µ (which is the case of interest here), then we can
re-write

Ȳ − µ
σ/
√
n
∼ Normal(0, 1),

as seen in Example 3.1.

The only difficulty here is that in order to use the Normal(0,1) sampling distribution for Ȳ , we would need
to know the true value of the other parameter σ2. But we do not — the best we can do is to actually plug
in an estimator. As seen above, the MLE is σ̂2. However, it can be proved that this is a biased estimator,
i.e. E[σ̂2] 6= σ2. Conversely, we can prove that the estimator

S2 =
n

n− 1
σ̂2 =

n∑
i=1

(Yi − Ȳ )2

n− 1
(3.14)

is unbiased and so, from a frequentist point of view, is preferred. This is one of the cases where the MLE
is actually not optimal (at least from a purely frequentist point of view).

Using S2 as the best proxy to the unknown (and actually unknown-able!) σ2, we obtain the statistic

T =
Ȳ − µ
S/
√
n
,

which however is not associated with a standard Normal sampling distribution. However, expanding on
Equation 2.9, we can derive the general result that

f(Y )− E[f(Y )]√
V̂ar[f(Y )]

∼ t(0, 1, n− 1), (3.15)

where V̂ar[f(Y )] indicates the “best” sample estimate of the underlying variance. Finally, we can use this
result to derive the sampling distribution for T

Ȳ − µ
S/
√
n
∼ t(0, 1, n− 1).

Thus, to compute the confidence interval in this case we need to use tail-area probabilities from a
t(0, 1, n− 1) distribution — instead of the standard Normal we have used so far. Using R we can compute
the quantiles of the t(0, 1, n− 1) distribution as

which are numerically equal to qL = −2.045 and qU = 2.045. Considering that the numerical value in
the observed sample for S2= is 897.2, we can then use these values to derive the 95% confidence interval
for the sample mean as[

Ȳ − 2.045
S√
n

; Ȳ + 2.045
S√
n

]
= [22.872− 2.045(5.469); 22.872 + 2.045(5.469)]

= [11.69; 34.06].
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* Warning

Notice that in this case, we happen to obtain data for which the sample variance S2 is actually
smaller than the true underlying value σ2. Of course, in real life we would never know the true
value of σ2 and thus we could not make this assessment. And more importantly, we ought to use the
t-version of the computation of the confidence interval, to account for the extra layer of uncertainty
in the estimates.





4

Statistical testing

Statistical testing is a process aimed at using statistical modelling and the available evidence to falsify
claims about an alleged data generating process (DGP); a typical example is to assume a working
hypothesis that in a comparison between two interventions the true population difference in effect is
0 — that is the new treatment is no better (and no worse) than the standard of care. In a nutshell, the
point of statistical testing is to aim at rejecting this hypothesis (which corresponds to a specific DGP).
Medical research is probably one of the research areas in which testing has historically played a pivotal
role, e.g. in the design and conduct of clinical trials, as we will see later.

Arguably statistical testing can be seen as central to the Frequentist and the Likelihood paradigm. In fact,
some of the major arguments between Neyman (especially) and Pearson on the one hand and Fisher on
the other hand have centered around the philophy underlying the testing procedures. As for the Bayesian
approach, while suitable theory and methodology exists (which we only briefly mention in Section 4.1),
it is perhaps less central to the overall paradigm. One of the reasons for this is that, by its own nature, the
Bayesian analysis allows direct probabilistic statements on all the unknown features of the DGP.

( Confusion

If you found the distinction between the three main schools of statistical thought discussed in
the context of estimation confusing, things are even more subtly complex in terms of testing. The
philosophy underlying the mathematical construction of the testing procedure is fundamentally
different under the frequentist and the likelihood approach, as we will discuss later. But too often,
the two have been seemlessly conflated into a unified theory — even in the common case of design
and analysis of clinical trials (Goodman 1999). For this reason, it is important to realise the main
features of each approach and appreciate the intrinsic distinctions, advantages and disadvantages.
In addition, recently there has been a marked shift in the scientific community, who have started to
recognise and promote estimation over testing. This has also been caused by the backlash following
the so-called “reproducibility crisis” linked to the (mis-)use of p−values, which has led to a position
paper (Wasserstein, Lazar, et al. 2016), discussing the potential pitfalls of practices that are too
heavily focussed on testing.

4.1 Bayesian approach

We show here a very simple example of Bayesian testing, based on a real analysis performed by Pierre
Simone Laplace, a French mathematician who in the late 19th century made great contributions to several
scientific disciplines, including Statistics. Despite its almost artificial simplicity, this example illustrate
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how we can use the full posterior distribution to make probabilistic statements about underlying DGPs,
effectively using inference to perform a variety of testing.

Example 4.1 (Female births in Paris). We consider here the famous data analysed by Laplace on the
number of female births in Paris. In 1710, John Arbuthnot, a Scottish medical doctor with a passion for
mathematics, analysed data on christening recorded in London between 1629 and 1710 to conclude
that males were born at a “significantly” greater rate than females. This being somehow against the
assumption of equal probability for the two sexes, he deduced that divine providence accounted for it,
because males die young more often than females.

Laplace analysed similar data collected in Paris from 1745 to 1770. He observed a total of r = 241 945
girls born out of a total of n = 493 527 babies and was interested in estimating the probability of a female
birth, θ. Laplace based his analysis on a reasonable Binomial model for the data: r | θ ∼ Binomial(θ, n)
and pragmatically assigned a Uniform distribution in [0; 1] to θ: p(θ) = 1. This assumption is meant to
encode complete lack of knowledge on the model parameter — the only thing this prior is implying is
that θ has to be between 0 and 1 (which is of course true, as it is a probability). But we are assuming
that any value in this range is equally likely. Although this is perhaps a rather unrealistic assumption, it
simplifies computation of the posterior distribution.

With a little of algebra, it is possible to show that in this case θ | r, n ∼ Beta(r + 1, n− r + 1). We can use
R to quantify the posterior probability that θ > 0.5 (i.e. that the true data generating process does rely on
a higher chance of a newborn being a male) as

# Data: number of girls (r) out of the total births (n)
# in the time interval considered
r=241945
n=493527
# Computes the tail area probability under the posterior distribution using
# simulations from the posterior
nsim=10000
sims=rbeta(n=nsim,shape1=r+1,shape2=n-r+1)
# Tail-area probability
sum(sims>=0.5)/nsim

[1] 0

So, given the model assumptions and the observed data, the working hypothesis that θ ≥ 0.5 has
essentially no support whatsoever. Laplace calculated analytically that Pr(θ ≥ 0.5 | r, n) = 1.15× 10−42

and thus concluded that he was “morally certain” that it was in fact less than 0.5, in accordance with
Arbuthnot’s finding.

à Bayes Factors and the strength of the evidence

Bayesian testing can get much more complicated than shown here. In principle, the main idea is to
enumerate an exhaustive list of competing DGPs, indexed by a specific distributional assumption for

the parameters θ. For example, we may consider p(θ |M1) ∼ Beta(3, 22); p
(

log
(

θ
1−θ

)
|M2

)
∼

Normal(0, 10); p(θ |M3) ∼ Uniform(0, 1), . . . — notice that forM2, we are specifying a prior on
a different scale (technically, this is the logit transformation, which we will see in Chapter 5).
Each of these generative modelsM1, . . . ,MK can be associated with a prior distribution p(Mk),
for k = 1, . . . ,K. Bayesian updating can be then applied given the data to obtain an estimate of
the posterior distribution for each of the hypotheses being analyses, p(Mk | y).

https://en.wikipedia.org/wiki/John_Arbuthnot
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Once the posterior distributions are available, we can compute the Bayes factor for model k versus
model j (for k, j = 1, . . . ,K) as

BFkj =
p(y |Mk)
p(y |Mj)

=
∫
p(θ |Mk)p(y | θ,Mk)dθ∫
p(θ |Mj)p(y | θ,Mj)dθ

A rule of thumb to interpret the observed value of the BF is provided by Jeffreys who suggested the
following interpretation.
• BF ∈ [1; 3.2): the strength of the evidence forMk againstMj is “not worth more than a bare

mention”;
• BF ∈ [3.2; 10) the strength of the evidence forMk againstMj is “substantial”;
• BF ∈ [10; 32) the strength of the evidence forMk againstMj is “strong”;
• BF ∈ [32; 100] the strength of the evidence forMk againstMj is “very strong”;
• BF> 100 the strength of the evidence forMk againstMj is “decisive”.
In reality, the computation for the BF is complicated for two reasons:
1. In order to derive the marginal distribution of the data given the postulated model, we need to

integrate out the uncertainty about θ, described by the posterior distribution. This is essentially
akin to computing some weighted average of the full models for the observed data (as a function
of the prior for the models as well as the priors for the parameters within each model). As
shown in the equation, this involves the computation of generally very complex integrals, thus
making this calculations hard to perform.

2. Even if we could easily make this computation, the underlying assumption here is that we
are able to enumerate all the competing DGPs. And that one of the models described by
M1, . . . ,MK is indeed the truth — which we have no real means of ensuring.

Bayesian testing remains one of the most complex parts of the whole approach. And, as mentioned
above, it is perhaps fair to say that, by nature, the Bayesian approach is more focused on a purely
estimation context, given that the output of the posterior distribution can indeed be used to
make direct probabilistic statments, as in Example 4.1. More details can be found for example in
Spiegelhalter, Abrams, and Myles (2004), Gelman et al. (2013) and Kruschke (2014).

4.2 Likelihood approach: “significance testing”

Fisher’s approach to testing could arguably be seen as an extension to his estimation procedure, based
on the likelihood function (you will see this extensively in both STAT0015 and STAT0016). The most
basic structure of the problem is to consider a working hypothesis that represents some putative data
generating process. Typically, this is some kind of “null” model, implying for instance that there is no
meaningful difference in the effect of two competing interventions being tested. We call this the null
hypothesis and we indicate it as H0.

For example we may consider a “two-sample problems”, where we randomise n0 individuals to inter-
vention 0 (say, standard of care) and n1 individuals to intervention 1 (say, an innovative drug). This is a
very common set up and you will encounter it repeatedly in STAT0015, STAT0016 and, to some extent, in
STAT0019 too.

The total number of individuals in the study is n = n0 + n1. The data comprise of the two variables
y0 = (y10, . . . , yn00) and y1 = (y11, . . . , yn11), where the subscript “10” indicates the first individual in the
the “null” intervention arm (i.e. standard of care), while the subscript “11” indicates the first individual in
the active intervention arm (the new drug). We could label our data more compactly using the notation
yij , where j = 0, 1 indexes the treatment arm and i = 1, . . . , nj indexes the individuals in each.



60 4 Statistical testing

If the outcome is some continuous, symmetric quantity, we may be willing to describe the sampling
variability in the two samples as

y10, . . . , yn00
iid∼ Normal(µ0, σ

2
0) and y11, . . . , yn11

iid∼ Normal(µ1, σ
2
1),

In a case such as this, we may specify the null hypothesis as H0 : µ1 = µ0, or alternatively (and
equivalently!) H0 : δ = µ1 − µ0 = 0 — i.e. that there is “no treatment effect” at the population level.

Given the sample data, we can produce estimates for the main model parameters. For example, as shown

in Chapter 3, the MLE for µj is the sample mean Ȳj =
nj∑
i=1

Yij
nj

, with observed value ȳj . Using the results

shown in Equation 3.11, we can prove that

Ȳj =
nj∑
i=1

Yij
nj
∼ Normal

(
µj ,

σ2
j

nj

)
.

Moreover, taking advantage of the mathematical properties of the Normal distribution, we can prove that
if X1 ∼ Normal(µ1, σ

2
1) and X2 ∼ Normal(µ2, σ

2
2) independently, then

• X1 +X2 ∼ Normal(µ1 + µ2, σ
2
1 + σ

2
2);

• X1 −X2 ∼ Normal(µ1 − µ2, σ
2
1 + σ

2
2).

Thus, we can construct an estimator for the difference in the treatment effect δ̂ = D = Ȳ1− Ȳ0 and derive
that

D = Ȳ1 − Ȳ0 ∼ Normal
(
µD, σ

2
D

)
∼ Normal

(
µ1 − µ0,

σ2
0

n0
+
σ2

1

n1

)

If we knew the underlying values for the two population variances (σ2
0 , σ

2
1), then we could use Equation 3.4

and derive that
D − δ√
σ2

0
n0
+ σ2

1
n1

∼ Normal(0, 1). (4.1)

Obviously, we are not likely to have this information and thus we can first provide an estimate of σ2
D

using the sample variance

S2
D =

S2
0

n0
+
S2

1

n1

=
n0

n0 − 1

n0∑
i=1

(Yi0 − Ȳ0)2 +
n1

n1 − 1

n1∑
i=1

(Yi1 − Ȳ1)2

expanding on the result shown in Equation 3.14 and then derive

T =
D − δ√
S2
D

∼ t(0, 1, n− 1), (4.2)

adapting the result shown in Equation 3.15.

Fisher’s idea on testing is that we can actually use this result to compute some measure of how much
support the observed data give to the null hypothesis (in this case that δ = 0).

For instance, suppose that the data observed are as described by the histograms and summary statistics
shown in Figure 4.1.
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(a) Histogram of the sample data y0

ȳ1 = 31.40
s21 = 334.85
n1 = 78

0

5

10

15

20

0 25 50 75
y1

Fr
eq

ue
nc

y

(b) Histogram of the sample data y1

Figure 4.1: Graphical summary of the observed data

Given the sample values and estimates

n0 = 80; n1 = 78;

ȳ0 = 25.37; ȳ1 = 31.40;

S2
0 = 210.68; S2

1 = 334.85,

we can compute the observed value for the estimate of the true difference in the two means d = 6.02 and
the estimate for its variance

s2
D =

s2
0

n0
+
s2

1

n1
=

210.68
80

+
334.85

78
= 2.63 + 4.29 = 6.93.

Under the null hypothesis, the observed test statistic is

t =
d− 0√
s2
D

=
6.02
2.63

= 2.29.

Fisher thought that if the null hypothesis were true, then we would expect the observed value t of the
test statistic T to be fairly “central” in the range of its sampling distribution. In other words, he suggested
using tail-area probabilities under the sampling distribution p(t | θ,H0) to find the chance of observing
a result “as extreme as, or even more extreme than” the one that actually obtained in the current data.
Intuitively, if t > Med(T ), i.e. the observed value of t is “larger than normal”, we would be looking at
even larger values; conversely, if t ≤ Med(T ), “even more extreme” values would be in fact smaller than
that observed.

In the present case, we can use R to compute the p−value Pr(T > t | θ,H0)

# Computes the tail-area probability under the sampling distribution under H_0
# NB: the option 'lower.tail=FALSE' computes the area to the *right* of the
# observed value t
pt(q=t,df=n-1,lower.tail=FALSE)

[1] 0.01170658
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à They didn’t have a computer. . .

Equation 4.1 and Equation 4.2 construct the relevant test statstics using a re-scaling of the quantity
of interest D. This is essentially a historical accident — the reason for this is that even if we could
determine that D was associated with a Normal sampling distribution, in practical terms, without
computers it was difficult (although not impossible) to compute probabilities for a non-standard
Normal (i.e. one with mean different than 0 and variance different than 1). Conversely, computations
with a standard Normal (or, for that matter, with a t with mean equal to 0 and variance equal to 1)
are much simpler to perform by hand, which Fisher had pretty much to do. With modern computers,
we do not really worry about re-scaling the relevant quantity D to the standardised test statistics
Z and T . But because re-scaling does not really cost much in computation terms (in fact, hardly
anything at all!), this procedure has stuck and we still use it.

The p−value is the area shaded to the right of the observed t = 2.29, in Figure 4.2 (note that the value
of t is greater than the median of the distribution and so we need to look for the tail-area in the right).
Because the probability of observing something as extreme as, or even more extreme than the data we have
actually got in front of us is extremely small, we deem that the data provide very little support to the
working hypothesis of no difference in the population means.

t = 2.290.0
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Figure 4.2: The sampling distribution for the statistic T . The shaded area indicates the p−value
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( p-values and continuous distributions

The interpretation of the p−value in terms of assessing the probability of observing something as
extreme as, or even more extreme than the data actually observed (or, in other words, as a tail-area
probability) is clearly a mouthful and a slightly subtle concept.
The reason why Fisher had to use such a convoluted phrasing is that, when dealing with continuous
data, the sampling distribution does not really represent a probability, but rather a density. So, it is
impossible to quantify the strength of the evidence just in correspondence of the observed value
for the test statistic.
One criticism associated with this (inevitable!) choice is that the strength of the evidence (or, in
other words: whether the observed data are consistent with the working hypothesis) depends on
the data actually observed, as well as on data (“even more extreme”) that might be — but have not
been — observed.
In addition to this, by its own nature, it is possible that the same p−value is computed for a very
small and a very large study; the conclusion in terms of strength of the evidence would be identical,
without distinction of the underlying sample size (Goodman 1999).

In a similar way to Jeffreys, Fisher also provided some rule of thumb to interpret the p−value P observed
from the data at hand.

• If P < 0.01, then conclude that there is strong evidence against H0;
• If 0.01 < P < 0.05, then conclude that there is fairly strong evidence against H0;
• If P > 0.05, then conclude that the there is little or no evidence against H0, or alternatively, that the

observed data are consistent with the model specified in H0.

Of course, there is nothing special about the value 0.05 (5%), which is effectively used as the threshold
for statistical significance. And more importantly, can a dataset giving rise to a p−value of 0.0499 really
be considered as substantially different than one giving rise to a p−value of 0.0501? Yet, for a very long
time, medical and psychology journals in particular have obsessed over the “quest for significance”, at
times refusing to publish studies with results indicating a p−value above 0.05 as irrelevant.

à Confidence intervals and p-values

Suppose we test a null hypothesis H0 : µ = µ0 and find that the p−value is greater than 0.05. Then
the 95% confidence interval for µ will include the hypothesised value µ0. If P < 0.05 then the 95%
confidence interval will not include µ0. In other words:

The 95% confidence interval for µ consists of all hypothesised values µ0 for which the p−value
is greater than 0.05.

Thus, if you calculate a 95% confidence interval that does not include a µ0 of interest, then you
can infer that the p−value will be less than 0.05. Likewise, if a 99% confidence interval does not
include µ0, the p−value will be less than 0.01. Note, though, that there is a logical disctinction
between estimation and testing.

4.3 Frequentist approach: “hypothesis testing”

The main idea underlying Neyman and Pearson’s (NP’s) approach to testing is that, in fact, this is not an
inferential problem, but rather a decision-making one.

The rationale in NP’s approach is that the researcher does not really believe in H0 — if we thought that a
new drug did not really have any difference over something that already exists, what would be the point
in investing money, time and research in developing it? H0 is just a working hypothesis that we would



64 4 Statistical testing

like to discard, or in technical parlance reject, given the observed data (and the modelling assumptions
we are making!).

For instance, what the researchers would probably truly believe is that in fact intervention 1 is more
effective than intervention 2 (i.e., assuming that the higher the population mean, the better the health
condition, that µ1 > µ0). Thus, we can also specify an alternative hypothesis H1 : µ1 > µ0 or,
equivalentely H1 : δ > 0, to indicate that the new intervention is better.

( Unlikely events

One important and perhaps subtle feature of the testing procedure is the distinction between the
idealised (null) hypothesis and the empirical evidence we want to use to disprove it.
• The null and the alternative hypotheses are defined in terms of the population parameters. So

by considering H0 : µ1 = µ0 we are assuming that the “true” average intervention effects are
identical.

• However, we will never be in a position of osserving the population parameters. All we can do
is get some sample data and then use suitable statistics to estimate the underlying parameters
and then say something about whether these are equal or not. So it is perfectly possible that,
just by chance, we observe data that look like they could be drawn by a common generating
process where the two population means are the same. But in fact the underlying, true DGP
may be characterised by different means (perhaps where the difference is only little).

For this reason, NP have framed their hypothesis testing problem in terms of the decision made about
whether or not the null hypothesis is the underlying truth, based on the current data. Table 4.1 shows
this schematically (and you will see more on this in STAT0015 and STAT0016).

Table 4.1: The decision problem underlying NP’s theory of hyphotesis testing

H0 true H0 false

Reject H0 Type I error α (False positive) Correct inference (True negative)
Fail to reject H0 Correct inference (True positive) Type II error β (False negative)

If the true “state of nature” was that there is in fact no difference in the intervention effects (labelled as
“H0 true”), if the data make us reject H0, then we would be making an error. NP call this “Type I error”,
indicated as α — this is essentially a “false positive”, because we would be erroneously claiming that
there is a difference in the intervention effects, when in fact there is not. Conversely, if the data make
us fail to reject H0, then we would be making the correct decision. The Type I error is also usually (and
rather confusingly!) referred to as “significance level”.

Similarly, if the true “state of nature” was that the new intervention is more effective (i.e. there is a
difference in the population means), then the situation is reversed: if we have enough evidence to reject
the null hypothesis, then we would have made the correct decision. But if the data were not indicating
that we should reject H0, then we would be making an error. NP call this the “Type II error” β, which can
be thought of as a “false negative” result, because we would conclude that there is no difference, when in
fact one is present.

In particular, in a typically frequentist fashion, we can reason along the following lines: if we were able to
replicate the experiment (data collection) over and over again, under the same experimental conditions we
would have the following situation.

• If H0 is indeed the true DGP, then we would make the wrong decision in a proportion of times equal
to α, while we would make the correct decision in the complementary proportion of times 1− α.
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• If H1 is indeed the true DGP, then we would make the wrong decision in a proportion of times equal
to β, while we would make the correct decision in the complementary proportion of times 1− β.

The researcher is given the choice to tune the two unknown probabilities: NP’s suggestion (which has
essentially become some kind of dogma in many areas of applied research) is that it is good to keep the
probability of making a Type I error α to a very low value, typically 1 in 20, or 0.05. This means that
if we were able to do the experiment a very large number of times under the same conditions if H0 is the
true state of nature, on average we would correctly fail to reject the null hypothesis 95% of the times
(approximately 1 every 20 replicates).

As for the Type II error, NP suggested that, somewhat arbitrarily, the researcher could live with a less
stringent requirement and typically β is fixed at either 10% or 20%. This means that if there truly is
an intervention effect (i.e. H1 is the “truth” and thus the two population means are different), we are
happy to mistakenly claim the opposite result in 10-20% of the times. Intuitively, the rationale for this
imbalance in the values of α and β, can be explained as follows. Most likely, the “status quo” intervention
(with population mean µ0) will be established and probably a “safe option”. The new intervention may
be very good and improve health by a large amount. But of course we are not sure, because perhaps the
data are limited in scope and follow up. Thus, we want to safeguard against making claims that are too
enthusiastic about the potential benefits of the new intervention — that is why we keep the Type I error
probability to a low value. Conversely, although it is bad to miss out on claiming that the new intervention
is in fact beneficial, we are more prepared to run this risk — and that is why β is typically higher than α.

The graph in Figure 4.3 visualises the ideas underlying the procedure for hypothesis testing. For the sake
of argument, imagine that the true DGP is characterised by a Normal distribution where the population
mean and variance are µ = 0.01 and σ2 = 0.852.

For simplicity (and unrealistically!), we assume that we, the researchers performing the analysis, do know
the true value of the population variance, while the population mean is unknown to us. We then define
the null hypothesis as H0 : µ = µ0 = 0 in contrast with the alternative H1 : µ = µ1 = 0.05. As is almost
invariably the case, the alternative hypothesis does not represent the “truth”, but simply a proposed
model in which the treatment does have a (clinically meaningful) effect — and in this particular case,
the true treatment effect µ happens to be closer to H0 than it is to our posited alternative DGP, indexed
by H1. Also, we assume that data are observed for n = 1250 individuals and these are modelled as

y1, . . . , yn
iid∼ Normal(µ, σ).

Suppose that we decide to consider as test statistic the sample mean Ȳ . Given the model assumptions
specified above and recalling Equation 3.11, we know that

Ȳ ∼ Normal
(
µ = 0.01,

σ√
n
=

0.85
35.36

= 0.024
)

(4.3)

(of course, in reality, we would not know the true values for the parameters, but remember that in this
example, we are pretending to be some kind of Mother Nature figure, who knows all. . . ).

By plugging in the values for the hypothesised means µ0 and µ1, we can derive the sampling distributions
under the two competing hypotheses

p(ȳ | θ,H0) = Normal (0, 0.024) and p(ȳ | θ,H1) = Normal (0.05, 0.024) .

Notice that, unlike the model in Equation 4.3, even without the gift of being Mother Nature, we are in
general able to determine these two distributions, because they depend directly on our model assumptions
and the observed data, which allow us to estimate the relevant parameters.

The two sampling distributions are shown in Figure 4.3 as the blue and red curve, respectively. The dark
grey area under the blue curve represents the tail-area probability under the null sampling distribution,
which we have constructed to be equal to α. Similarly, the light grey area under the red curve represents
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Figure 4.3: A graphical depiction of the decision-making problem in hypothesis testing

the tail-area probability under the alternative sampling distribution, equal to β (= 0.33, given the model
assumptions specified in this case).

The 95% quantile of the sampling distribution under H0, computed as c = 0.0395 in the present case, is
indicated as the large dot above the x−axis in Figure 4.3. NP refer to this as the “critical value”, because
it determines the “critical” (or “rejection”) region: if the observed value of the test statistic determined by
the data lies in the rejection region, then the data give more support to the sampling distribution under
H1. Intuitively, we can see this by considering that for each point in the region labelled as “Reject H0” in
Figure 4.3 (i.e. the dark grey area), the density is higher under the red, than under the blue curve. If, on
the contrary, the observed value of the test statistic does not lie in the rejection region (i.e., in this case is
less than the critical value), then we do not have enough evidence to reject the null hypothesis. This is
the decision rule underpinning the procedure of hypothesis testing:

If the observed value of the test statistic is in the critical region (which is determined by the model
assumptions and the observed data), then reject H0. If not, we fail to reject H0.

( Fisher vs Neyman-Pearson

Superficially, Fisher’s procedure of significance testing and NP’s hypothesis testing, look rather
similar. They both depend on defining some null hypothesis (typically indicating the lack of treatment
effect, i.e. meaningful difference between two mean responses), which we do not really believe in
but would like to be able to falsify; then they both involve the definition of some test statistic, for
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which we could determine a sampling distribution, based on the model assumptions; then they
both involve computing the value of the test statistic.
Where they differ (substantially!) however, is that significance testing outputs a p−value, which is
a numerical summary of the “strength of the evidence” against H0. We can make a decision based
on the p−value, as outlined above — so if it is very small, we can safely reject H0, while if it is
borderline the set significance level (e.g. 0.05), our assessment will be much less certain.
On the contrary, NP’s procedure has a strictly binary outcome: whether the observed value of the
test statistic falls just above the critical value, or it is much, much larger, it is actually irrelevant for
the decision problem: in both cases, we would reject H0.
These two interpretations are often conflated — and p−values tend to be evaluated under this strict
binary decision rule.

Another important distinction between signficance and hypothesis testing is that in the former case, we
do not take explicit notice of the alternative DGP described by H1, which is a central part to NP’s theory.
The main advantage of the fact that we do consider an alternative mechanism to generate the data is
that, given the significance level α and the sample size of the dataset we wish to use to compute the test
statistic, we can also assess the chance of making a Type II error, which we have indicated as β, above. For
example, for α = 0.05 and n = 1250 as shown in Figure 4.3, the resulting Type II error is β = 0.33. This
automatically allows us to compute the “power” of the test statistic, 1−β, which indicates the probability
of rejecting H0, when it is false.

We can use a simulation approach to better understand this concept. Given the model assumptions above,
we can use R to simulate a large number of potential replicates of the experiment (i.e. the data collection),
assuming that H0 is false. For example, we could use the code below.

Figure 4.4 shows a graphical summary of the results for this simulation, when we use a sample size
of n = 1250 and consider nsims = 5000 replicates. The x−axis indexes the value of the simulated test
statistic Ȳ that is obtained for each replicate of the experiment — for better visualisation, these have
been sorted from the lowest (-0.036) to the highest value (0.15). Each dot in the plot is the computed
value of Ȳ . The dashed vertical line indicates the critical value c = 0.0395, which in turns determines the
rejection region.

As is possible to see, when we set α = 0.05 and n = 1250, the percentage of simulations for which we
correctly manage to reject H0 (remember that we are simulating data from the alleged DGP under H1,
which means that H0 is false!) is about 68%, in line with the theoretical outcome shown in Figure 4.3.

à Likelihood ratio tests

As is customary within the frequentist approach, the choice of a possible test statistic depends on a
set of long-run properties that define its optimality. There are of course very many potential choices
that can be made — the discussion of these properties is beyond the scope of these notes.
In many practical cases, it can be proved that among all tests for a specified level α and for a set
sample size n, the likelihood ratio test statistic, defined as

Λ(Y ) =
L(θ | Y , H0)
L(θ | Y , H1)

is the one with the highest power and this is often regarded as an optimal property, thus justifying
the use of this test statistic in many applied cases. Intuitively, the likelihood ratio is small if the
alternative model is better than the null model.
In particular, it can be proved that, at least approximately,

−2 logΛ(Y ) ∼ Chi-squared(ν),
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Figure 4.4: Output of 5000 simulations for data of sample size n = 1250, generated from H1

where the degrees of freedom are determined by the type of the hypotheses being tested.
If we define χ(1−α)(ν) as the 100(1− α)% quantile of the Chi-squared(ν) distribution, then the
(2-log)likelihood-ratio test provides the decision rule as follows:
• If −2 logΛ(Y ) > χ(1−α)(ν), then reject H0

• If −2 logΛ(Y ) ≤ χ(1−α)(ν), then fail to reject H0.
More details can be found for example in Casella and Berger (2002).

Because of the obvious relationship between the sample size n and the level of precision with which we
can estimate the model parameters, which essentially determines the variance of the observed data Y
and therefore of the test statistic f(Y ), we can then use the power for two important purposes:

1. As a tool to determine the “best” test, for a given significance level and set sample size.
2. As a tool to determine the “optimal” sample size we need to observe to be able to constrain the Type

II error, given a fixed significance level.

Figure 4.5 shows an example of the analysis shown above for several choices of the underlying sample
size, in this case n = 20, 100 and 2500. As is possible to see, the standard deviation for the sampling
distribution of the test statistic Ȳ , which in this case is given by σ√

n
, does decrease for increasingly large

values of the sample size n. This implies that a different critical value c would be computed in each of the
three cases depicted in panels (a)—(c).

When the sample size is very small, then the two sampling distributions under H0 and H1 are very close
together, because the means µ0 and µ1 are also assumed to be fairly close and the standard deviation is
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Figure 4.5: The relationship between power and sample size

relatively large. Intuitively, this means that it will be difficult to tell them apart, which in turns means
that we are very much prone to mistakes in the decision-making (and so we would fail to correctly reject
H0 a large proportion of times — in fact about 92% of the times). Thus, for such a small sample size, the
power is very low.

But when we increase the sample size, we also tend to increase the power of the test, i.e. its ability to
correctly detect a signal, while keeping fixed its ability to safeguard from claiming a false significant
results. By plotting the power resulting for a range of possible sample sizes, we get the graph in panel (d),
which is often referred to as the power function of the test.

At the stage of designing a study, we could use the power function to determine the sample size that is
necessary so that the resulting test has a significance level (i.e. Type I error) α and a power 1− β, for
fixed values of α (i.e. almost invariably 0.05) and β (e.g. 0.2). In the current case, given all the model
assumptions, we would need to observe at least n = 1787 individuals to be able to detect a difference of
µ1 − µ0 = 0.05 with 80% power — this is indicated by the vertical dashed line in panel (d) of Figure 4.5.

( α vs P

The sample size calculation, or power analysis, shown above highlights another subtle idiosyncrasy
of the “combined” Fisher/NP approach (which, as we have mentioned above, neither of the original
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proponents would have condoned!). Medical research is designed according to NP’s precepts, which
aim at controlling the Type I and II errors by setting a fixed signficance level α = 0.05 and then
optimising the sample size n in order to obtain a power of 1− β (typically 0.8). But then, once the
data are actually collected, the analysis is performed under a Fisherian approach, which is based
on the calculation of the p−value.
And despite the fact that the common threshold value for both α and P are usually set at 0.05,
these are two fundamentally different quantities: α is set from the outset and it is immutable and
independent on the data that are actually observed. P , on the other hand, is determined by the
actual data and is meant to provide a graded measure of the strength of the evidence against the
null hypothesis (and, notably, without any formal regards to what is the alternative hypothesis).

4.4 Commonly used statistical tests

In this section, we present some of the most common statistical tests (with specific reference to the
Likelihood approach and the use of p−value). You will see these in many of the different topics discussed
in STAT0015 and STAT0016.

4.4.1 Chi-squared test

The Chi-squared test is encountered in many applied cases. One of the most important cases is the
comparison between groups of categorical data, e.g. grouped in a contingency table such as the one
presented below.

Table 4.2: An example of categorical data grouped by treatment arm and clinical output

Disease cured Disease not cured Total

Control arm 13 40 53
Treatment arm 18 29 47

Total 31 69 100

We can rescale the data in Table 4.2 to compute the probability that a random patient is cured from the

disease under the two treatment arms pC =
13
53
= 0.245 and pT =

18
47
= 0.383. A reasonably relevant

null hypothesis would be that there is in fact no association between the disease status at the end of the
study period and the treatment arm.

If this null hypothesis is true, then we would expect that the total number of patients who are cured from
the disease (31) would be re-proportioned in the two groups simply according to the overall sample size
observed in them (i.e. 53 and 47, respectively), without any differential impact of the treatment. Thus,
under H0, we would expect to see

ECC = 53× 31
100

= 16.43

patients who are cured from the disease in the control arm and

ECT = 47× 31
100

= 14.57
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in the treatment arm — the notation ECC and ECT is meant to convey the concept of expected outcome
among those Cured by the disease in the Control and T reatment arm, respectively, under H0. Using a
similar reasoning we can compute

EDC = 53× 69
100

= 36.57

and

EDC = 47× 69
100

= 16.43,

which indicate the expected number of patients who are still Diseased in the Control or T reatment arm,
respectively, under H0.

We can construct a test statistic that aims at comparing the observed data to the expected ones, under the
null model as

T =
∑

i=(C,D)

∑
j=(C,T )

(Yij − Eij)2

Eij
,

where Yij are the values in the cells of the contingency table and for which the observed sample value is

t =
(13− 16.43)2

16.43
+
(40− 36.57)2

36.57
+
(18− 14.57)2

14.57
+
(29− 32.43)2

36.57
= 0.716 + 0.322 + 0.807 + 0.363

= 2.21.

Recalling Equation 2.10, we can prove that (at least approximately) T ∼ Chi-squared(ν), where the
degrees of freedom ν are computed as (J − 1)× (I − 1), where J and I are respectively the number of
rows and columns in the contingency table. Thus, in this case we have that ν = (2− 1)× (2− 1) = 1.
We can use this information to compute a p−value to measure the strength of the evidence against the
null hypothesis of no association between the treatment and the probability of curing the disease as the
tail-area probability under a Chi-squared distribution with 1 degree of freedom, for example using the
following R commands.

# Defines the number of rows and columns of the contingency table
I=J=2
# Constructs the contingency table
Y=matrix(c(13,40,18,29),byrow=T,nrow=I,ncol=J)
# Constructs the matrix of expected counts
E=matrix(NA,J,I)
for (i in 1:I) {

for (j in 1:J) {
E[j,i]=sum(Y[j,])*sum(Y[,i])/sum(Y)

}
}
# Computes the test statistic
t=sum(((Y-E)ˆ2)/E)
# Computes the p-value based on the Chi-squared((J-1)(I-1)) distribution
pchisq(q=t,df=((J-1)*(I-1)),lower.tail=FALSE)

[1] 0.1372945

In this case, the p−value is substantially greater than 0.05 and therefore we cannot reject the null
hypothesis of no association. An alternative (more compact) way of performing the Chi-squared test is to
use the built-in function chisq.test.
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à One vs two sided tests

As mentioned above, the p−value computed using the T statistic and the tail-area of the Chi-
squared distribution does not account for what is the alternative — it is just the probability of
getting something as extreme as, or even more extreme than the observed value t, if H0 is true.
Often, however, available software programmes also conflate Fisher’s with NP’s interpretation and,
while returning a p−value as the main output of the calculation, they will also offer the user the
option to select one of three possible alternative hypotheses. For instance, there is another built-in
function named prop.test that can be used to perform a Chi-squared test on proportions. This
includes the option alternative that takes by default the value "two.sided", implying that the
alternative hypothesis H1 assumes that the true parameter θ simply is different than the value
specified under H0, θ0. In addition to that, prop.test also allows the user to specify the values
"less" or "greater", which imply alternatives in the form θ < θ0 or θ > θ0, respectively.
This is essentially against the very nature of the p−value approach: because, to be pedantic, it
is defined as the probability of getting a result as extreme as, or even more extreme than the one
observed, a p−value is by definition only meant to deal with an implicitly “one-sided” alternative
hypothesis. If t is “large”, then this implies that “more extreme” possible results should be measured
on the right tail-area of the sampling distribution under H0. If it is “small”, then the left tail-area is
to be used for the computation.
In practice, often p−values are used to report the results of a hypothesis tests, but it is important to
understand that this implies some sort of hybrid methodology.

The following example clarifies the issue. Given the data in Table 4.2, we can use the R function prop.test
to investigate the evidence against the null hypothesis of equality of the population proportions. This is
simply done as

prop.test(Y,alternative="two.sided",conf.level=0.95,correct=FALSE)

2-sample test for equality of proportions without continuity correction

data: Y
X-squared = 2.208, df = 1, p-value = 0.1373
alternative hypothesis: two.sided
95 percent confidence interval:
-0.31861433 0.04322292
sample estimates:

prop 1 prop 2
0.2452830 0.3829787

This configuration assumes the default implicit “two-sided” alternative (i.e. that the population proportions
under the treatment and control arms are just different, without specifying a direction for this difference).
The option correct=FALSE does not correct for the fact that the actual data are discrete counts, while the
Chi-squared distribution is continuous (this is a technicality and only relevant when the observed counts
are very small — as a rule of thumb, if there is any cell with a value less than 5, the continuity correction
should be applied).

As is possible to see, this command returns the same p−value shown above, Ptwo.side = 0.137, based on
the same value of the test statistic (indicated as X-squared in the computer output above). The graph in
Figure 4.6 shows a histogram for the distribution of the resulting test statistic in panel (a), as well as the
cumulative distribution function in panel (b). This shows, for each value on the x−axis the probability
that the test statistic is less than or equal to that value. So, in correspondence of the observed value 2.21,



4.4 Commonly used statistical tests 73

0.00

0.25

0.50

0.75

1.00

0 2 4 6
Test statistic

de
ns

ity

(a) Histogram for the distribution of the test statistic

X−squared= 2.21
0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5
Test statistic

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

(b) Cumulative distribution of the test statistic

Figure 4.6: Different representations of the test statistic, highlighting the p−value as the tail-area proba-
bility. The histogram shows that most of the density is distributed before the observed value of the test
statistic (indicated by the vertical dashed line), but the cumulative distribution plot in panel (b) highlights
this more clearly

we can see that the cumulative distribution function is around 0.863 (i.e. the probability that the test
statistic is greater than this observed value is 1− 0.863 = 0.137, as reported by the computer outcome).

However, if we use the option alternative="greater", with the idea that in fact we want to consider
the alternative hypothesis that the treatment arm is associated with a larger probability of being cured,
we can run the command

prop.test(Y,alternative="greater",conf.level=0.95,correct=FALSE)

2-sample test for equality of proportions without continuity correction

data: Y
X-squared = 2.208, df = 1, p-value = 0.9314
alternative hypothesis: greater
95 percent confidence interval:
-0.2895274 1.0000000
sample estimates:

prop 1 prop 2
0.2452830 0.3829787

and obtain a different p−value: Pgreat = 1− Ptwo.side/2 = 0.931. The rationale here is to essentially split
the tail-area probability to account that when the implicit alternative hypothesis is that the parameter is
different than the null value, then it may be either smaller, or greater. Assuming that these two are (at least
approximately) equally likely, then we can obtain the p−value associated with the implicit alternative
that the parameter is greater than the null as = Ptwo.side/2(= 0.0686 in this case).

Again, this interpretation of p−values is only possible in a combined approach where the design is based
on NP’s explicit set up of null and alternative hypotheses, but the analysis is based on the graded summary
of the evidence provided by the p−value, rather than the binary reject/fail to reject decision-making
approach advocated by NP.
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4.4.2 Fisher’s exact test

The analysis of Table 4.2 based on the Chi-squared distribution is valid but based on an approximation of
the sampling distribution of the test statistic. In fact, Fisher was able to determine this distribution more
precisely, by investigating the make-up of the contingency table. He was able to prove that for a generic
table of counts such as the one shown in Table 4.3:

Table 4.3: A general example of a contingency table

Disease Healthy Total

Control a b a + b
Treatment c d c + d

Total a + c b + d n = a + b + c + d

the exact distribution of the configuration of values (a, b, c, d) was:

p(a, b, c, d) =

(
a + b
a

)(
c + d
c

)
(

n
a + c

) =

(
a + b
b

)(
c + d
d

)
(

n
b + d

)
(this is technically a Hypergeometric distribution). We can use this to compute an exact p−value, by
enumerating all the possible configurations in which, for a fixed overall total sample size n, we would
observe a result as extreme as, or even more extreme than the one we have actually encountered. The
difficulty in the computation is not so much in obtaining the actual probability associated with a given
configuration (that Fisher proved how to compute analytically), as much as in the enumeration of all the
relevant cases.

For example, for the data in Table 4.2, having fixed the margins of the table to (53, 47) along the rows
and (31, 69) along the columns, “more extreme cases” include the tables where, instead of the observed
a = 13, the first cell has values 12, 11, . . . , 0 (notice that by modifying the first cell of the tables implies
that we also modify the second cell to respect the row margin, but also the third cell of the table so that
the first column total is respected. And by doing this, we are also modifying the fourth cell of the table so
that the second row total as well as the second column total are also respected).

We can make this computation using the R built-in function

fisher.test(Y)

Fisher's Exact Test for Count Data

data: Y
p-value = 0.1935
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.2018786 1.3434546
sample estimates:
odds ratio
0.5270614
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The function outputs several results. The most important one is the p−value P = 0.194. This is slightly
larger than the one computed using the Chi-squared test. This is a common feature of Fisher’s exact test.

* Warning

Despite using the exact sampling distribution under H0 for the relevant test statistic (as opposed to
an approximation based on the Chi-squared distribution), the Fisher’s exact test is often criticised
as being “too conservative”, i.e. as producing p−values that are artificially too high, over and above
the actual strength of the observed evidence agains the null hypothesis.
The reason for this feature is that Fisher’s exact test is rather technical and has to do with the
underlying discrete nature of Fisher’s procedure (the Hypergeometric distribution that underpins
the test is used to describe the sampling variability of a discrete DGP), which essentially clashes with
the significance testing machinery. More technical details are available in Casella and Berger (2002),
but the main take-home message is that almost invariably the technically less precise (because it is
based on an approximation) Chi-squared test is preferred.

4.4.3 Difference between two proportions

We can expand the idea shown in the analysis of the data for Table 4.2 to the more general case in which
we are interested in evaluating formally whether the difference between two proportions is significant. To
do this, it is helpful to realise that the data in Table 4.2 could be modelled equivalently by considering

rC ∼ Binomial(πC , nC = 53) and rT ∼ Binomial(πT , nT = 47),

where πC and πT are the underlying population proportion of individuals who are cured from the disease,
if given the control or the treatment, respectively. A reasonable null hypothesis is H0 : πC = πT , to
indicate the absence of a treatment effect. This can be described equivalently as H0 : π = πT − πC = 0.

The MLE for the difference in population proportions is

π̂ =
rT
nT
− rC
nC
= π̂T − π̂C

=
13
53
− 18

47
= 0.383− 0.245 = 0.138.

Replicating the argument made for Equation 4.1, the estimate for the variance of the MLE for the
proportion difference can be computed as

Var[π̂] =
π̂T (1− π̂T )

nT
+
π̂C(1− π̂C)

nC

=
0.383(1− 0.383)

47
+

0.245(1− 0.245)
53

= 0.00503 + 0.00349 = 0.00852

and so, recalling Equation 3.5, we can then derive that under the null hypothesis the test statistic is
associated (at least approximately) with a standard Normal distribution:

Z =
π̂ − 0√
Var[π̂]

∼ Normal(0, 1),

with an observed value

z =
0.138

0.0923
= 1.49.

Thus, the p−value for the null hypothesis is computed in R using the following code.
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# Observed data in the two treatment arms
rc=13; nc=53
rt=18; nt=47
# Computes the estimate for the difference in population proportions
pi.hat=(rt/nt)-(rc/nc)
# Estimates the pooled sd
pooled.sd=sqrt(((rt/nt)*(1-rt/nt)/nt)+((rc/nc)*(1-rc/nc)/nc))
# Computes the test statistics
z=(pi.hat-0)/pooled.sd
# And then computes the p-value based on approximate Normality
pnorm(z,lower.tail=FALSE)

[1] 0.06788723

Based on the Normal approximation for the test statistic, we can also compute a 95% confidence interval
for the difference in the population proportions as

π̂ ± 1.64
√

Var[π̂] = (0.138− 1.64× 0.0923; 0.138 + 1.64× 0.0923)
= (−0.0141; 0.29) .

The two results are of course consistent with one another. The p−value is marginally larger than the
usual threshold for significance (0.05) and so the 95% confidence interval includes the null value (i.e. a
difference of 0).

4.4.4 Wald test

The Wald test is based on defining a test statistic

W =
(θ̂ − θ0)2

Var[θ̂]
∼ Chi-squared(1),

where θ̂ is the best estimate (e.g. MLE) for the parameter of interest, θ; θ0 is the value posited under the
null hypothesis H0; and Var[θ̂] is the estimate of the variance of the estimator θ̂.

We can also prove that
√
W =

θ̂ − θ0√
Var[θ̂]

≈ Normal(0, 1),

in line with the results described above. In fact, there are more complex forms for the Wald statistic for
cases where we want to test multiple parameters at once — but you are unlikely to encounter these in
the modules you will take during your MSc programme.

à Wald and Likelihood ratio tests

The Wald test can be seen as an approximation to the Likelihood Ratio test — but one of the
advantages is that you do not require two competing hypotheses to compute its value (as you do
for the Likelihood ratio test).
The Wald test is often used in a regression analysis context (see Chapter 5), to determine whether
a specific covariate (predictor) should be included in the model.
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Regression analysis

Regression analysis is one of the most important tools available to a statistician (which you will see
extensively in all the statistical modules in the HEDS Programme). Gelman and Hill (2007) provide an
excellent introduction to the main techniques associated with regression analysis.

The main idea of regression is to link a function of some observed outcome (often called the “response”
variable), y, to a set of predictors (often referred to as “covariates”),X = (X1, . . . , XK). Examples include
modelling the relationship between some clinical outcome y, e.g. a measurement for blood pressure, and
a set of prognostic factors, e.g. sex, age, comorbidities, ethnic background, etc, which are used to predict
the outcome.

( Helpful language

Sometimes the terminology “dependent” and “independent” variables is used to describe the
outcome and the predictors — this is probably not very helpful though, because it somehow
conflicts with the concept of statistical independence: if two variables X and Y are statistically
independent on one another, then learning something about X does not tell us anything about Y ,
which is in fact the opposite assumption underlying regression analysis! We therefore do not use
this terminology in the rest of the notes.

Assuming we have observed data for n individuals

(y,X) = (y1, X11, . . . , X1K), . . . , (yn, Xn1, . . . , XnK),

in its simplest form, we can indicate a regression model as

f(yi |Xi) = β0 + β1Xi1 + β2Xi2 + . . . + βKXiK .

Even more specifically, the function f(·) is almost invariably chosen as E[Y |X] = µ and so the linear
regression model can be written as

E[Yi |Xi] = µi = β0 + β1Xi1 + β2Xi2 + . . . + βKXiK . (5.1)

à Helpful algebra

The expression in Equation 5.1 can be also defined more compactly and equivalently, using matrix
algebra as

E[Y |X] =Xβ,
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where β = (β0, . . . , βK) is the vector of model coefficients, each describing the impact (or effect)
of the predictors on the outcome — in this case we assume that the matrix of covariates is built as

X10 X11 X12 · · · X1K

X20 X21 X22 · · · X2K
...

...
...

. . .
...

Xn0 Xn1 Xn2 · · · XnK


and the first column of the matrix X is made by a vector of ones, i.e.

X10

X11
...

Xn0

 =


1
1
...
1

 .

This is needed to ensure that when performing the matrix multiplication

Xβ =


X10β0 +X11β1 + . . . +X1KβK
X20β0 +X21β1 + . . . +X2KβK

...
Xn0β0 +Xn1β1 + . . . +XnKβK


the first element in each row (i.e. for each of the n individuals) returns β0 as in Equation 5.1.

5.1 Regression to the mean

The term “regression” was introduced by Francis Galton1. Among many other topics, Galton worked to
study hereditary traits. In particular, he collected data on n = 898 children from 197 families.

The data comprise the height of each child yi, as well as the height of the father X1i and the mother X2i,
for i = 1, . . . , n, all measured in inches. An excerpt of the data is presented in Table 5.1.

Table 5.1: The first few rows of Galton’s dataset on height of parents and children

Family Father Mother Gender Height Kids

1 78.5 67.0 M 73.2 4
1 78.5 67.0 F 69.2 4
1 78.5 67.0 F 69.0 4
1 78.5 67.0 F 69.0 4
2 75.5 66.5 M 73.5 4

2 75.5 66.5 M 72.5 4

1 Galton was another very controversial character. He was a polyscientist, who made contributions to Statistics,
Psychology, Sociology, Anthropology and many other sciences. He was the half-cousin of Charles Darwin and was
inspired by his work on the origin of species to study hereditary traits in humans, including height, which he used
to essentially invent regression. He also established and then financed the “Galton Laboratory” at UCL, which Karl
Pearson went on to lead. Alas, Galton was also a major proponent of eugenics (in fact, he is credited with the
invention of the term) and has thus left a troubling legacy behind him.

https://en.wikipedia.org/wiki/Francis_Galton
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In its basic format, Galton’s analysis aimed at measuring the level of correlation between the children and
(say, for simplicity) the father’s heights.

* Warning

There are several nuances in Galton’s data structure; for example, many families are observed to
have had several children, which intuitively implies some form of correlation within groups of data
— in other words, we may believe that, over and above their parent’s height, siblings may show
some level of correlation in their observed characteristics. Or, to put it another way, that children ar
“clustered” or “nested” within families. There are suitable models to account for this feature in the
data — some of which will be encountered in STAT0016 and STAT0019.

The data can be visualised by drawing a scatterplot, where the predictor (father’s height) is along the
x−axis and the outcome (child’s age) is along the y−axis. This is presented in Figure 5.1, where each
family is labelled by a different colour.
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Figure 5.1: A graphical depiction of Galton’s data on father’s and children’s height

Galton’s objective was to find out whether there was some consistent relationship between the outcome
and the predictor and, if so, to quantify the strength of this relationship. In developing his original work,
he used a technique that was common at the time, called “least squares fitting”. The main idea underlying
least squares fitting is that we would like to summarise a set of numbers y1, . . . , yn, by using a single
value a and we would like to choose such a value a so that it is as close as possible to all the observed data
points. One way to ensure this is to determine a as the solution of the equation
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min
a

(
n∑
i=1

(yi − a)2
)
= min

a

(
(y1 − a)2 + (y2 − a)2 + . . . + (yn − a)2

)
. (5.2)

The intuition behind the least squares ideas is that by minimising the sum of the square distances between
each data point and the value a, we ensure that the “prediction error” (i.e. the error we make in using
the summary a instead of each true value yi) is as small as possible, overall. If we consider the linear
model in Equation 5.1, Equation 5.2 becomes

min
β

n∑
i=1

[yi − (β0 + β1X1i)]
2

and, as it happens, we can prove that the optimal values for β = (β0, β1) are

β̂1 =
Cov(y,X1)

Var[X1]
and β̂0 = ȳ − β̂1X̄1,

where

Cov(y,X1) =
1
n

n∑
i=1

(
X1i − X̄1

)
(yi − ȳ) (5.3)

is the covariance between the outcome y and the covariate X1, indicating a measure of joint spread
around the means for the pair (y,X1).

If we use the observed data (which we assumed stored in a data.frame, named galton), we can compute
the relevant quantites, e.g. in R using the following commands

y.bar=mean(galton$Height)
X1.bar=mean(galton$Father)
Cxy=cov(galton$Height,galton$Father)
Vx=var(galton$Father)
beta1.hat=Cxy/Vx
beta0.hat=y.bar-beta1.hat*X1.bar

which return the least square estimates for β̂0 and β̂1 as

β̂1 =
2.44
6.10

= 0.399 and β̂0 = 66.76− 0.399× 69.23 = 39.11.

We can use these estimates to superimpose the regression line over the observed data, as shown in
Figure 5.2.

We have purposedly chosen to show the x− axis going all the way to the origin (x = 0), even though
the mass of points is actually very far from this point. This is not surprising — it is not very meaningful
to imagine that we may have observed fathers whose height is equal to 0 inches! This highlights two
important features when presenting data and, specifically, regression analyses:

1. Plot the underlying data and/or the resulting regression curve on a suitable range. This should be
dictated mostly by the scale or range of the observed data;

2. It is often a good idea to re-scale the covariates. A useful re-scaling is to “centre” the covariates, by
considering X∗i = (Xi − X̄).

This is also related to the interpretation of the regression coefficients (at least for a linear regression),
which is why we have used this sub-optimal pictorial representation. Figure 5.2 shows that the coefficient
β̂0 identifies the value of the line in correspondence with a covariate set to the value of 0. In other words,



5.1 Regression to the mean 81

β̂0 = 39.11
β̂1 = 0.399

β̂1
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Figure 5.2: Galton’s original data with the regression line superimposed

if we considered a father whose height is 0 inches, we would be predicting that his child’s height would
be, on average, β̂0 = 39.11 inches — i.e. the point along the y−axis in which the regression line crosses
it. This is referred to as the intercept.

As for the second regression coefficient β̂1, the graph in Figure 5.2 shows that this can be interpreted as
the slope of the regression curve. That is the inclination of the line, as described by the angle shown in
the left-hand side of the graph (the arc below the line). The interpretation of this feature is that β̂1 is
responsible for how much the line “tiltes” — if the estimated value is high, then the line becomes steeper,
while if it is low, it becomes more shallow. When β̂1 = 0, then the regression line is parallel to the x−axis,
indicating the, irrespective of the value of the covariate X, the expected value for the outcome y remains
unchanged. This essentially indicates that if β̂1 = 0 then X has no effect on y.

If we compare two individuals whose X value differs by 1 unit (e.g. two fathers whose heights differ
by 1 inch), the slope indicates the increase in the expected outcome (e.g. the expected height of their
respective child). This can be easily seen by considering the linear predictor for two different fathers, say
F1 and F2, for whom the recorded heights are, say, 70 and 71 inches, respectively. The expected heights
for the childred of F1 and F2 are then

E[Y | X = 71] = β0 + β1 × 71 and E[Y | X = 72] = β0 + β1 × 72.

Thus, the difference between these two expected outcomes (i.e. the effect of a unit change in the father’s
height) is
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∆X = E[Y | X = 72]− E[Y | X = 71]

=
(
β̂0 + β̂1 × 72

)
−
(
β̂0 + β̂1 × 71

)
= β̂0 + β̂1 × 72− β̂0 − β̂1 × 71

= β̂1(72− 71)
= β̂1 = 0.399.

β̂0 = 66.76

β̂1 = 0.399
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Figure 5.3: Galton’s original data with the regression line superimposed, using the centred version of the
covariate on the x−axis

Figure 5.3 shows the original data on children’s height on the y−axis, along the centred version of
their father’s data on the x−axis and with the new regression line superimposed. As is indicated in the
graph, the slope β̂1 is unchanged, while the intercept is indeed changed. That is because the change in
the scale of the X covariate (which as is possible to see now goes from -7.23 to 9.27) is modified. The
“effect” of the covariate on the outcome is not affected by this change of scale; however, we are now in a
position of providing a better interpretation of the intercept: this is the value of the expected outcome in
correspondence of a centred value for the covariate equal to 0. It is easy to see that if X∗i = (Xi− X̄) = 0,
then the original value Xi = X̄. So the intercept is the expected outcome for a father with the average
height in the observed population — and this is something that may exist and certainly makes sense!

à Centering covariates

As you will see in more details if you take STAT0019, centring covariates is particularly important
within a Bayesian setting, because this has the added benefit of improving convergence of simulation
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algorithms (e.g. Markov Chain Monte Carlo), which underpin the actual performance of Bayesian
modelling.

The terminology “regression” comes from Galton’s original conclusion from his analysis — when plotting
the original data with superimposed both the least square regression line (in blue in Figure 5.4) and the
line of “equality” (the black line). This is constructed by using a slope equal to 0 and an intercept equal to
1, essentially implying that on average we expect children and their father to have the same height.
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Figure 5.4: Galton’s original data with the regression and equality lines superimposed

What Galton noted is that shorter fathers tended to be associated with slightly taller children. This is
noticeable because at the left-hand of the x−axis, the blue curve (the estimated least squares regression)
is higher than the line of equality. Conversely, if a father was taller, then on average his child(ren) tended
to be shorter than him (because at the other extreme the black line is increasingly higher than the blue
line). With his eugenist hat on, he found this rather disappointing, because it meant that the species could
not be improved (e.g. by selecting only taller parents to breed). For this reason, he gave this phenomenon
the rather demeaning name “regression to mediocrity” or “to the mean”.

5.2 Regression as a statistical model

Galton’s original analysis is not really framed as a full statistical model, because it is rather based on the
idea of mathematical optimisation provided by the least squares. In fact, he did not specify explicitly any
distributional assumption behind the data observed. From the statistical perspective, this is a limiting
factor, because, for example, it is impossible to go beyond the point estimate of the regression coefficients,
unless we are willing to provide some more expanded model, based on probability distributions.
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In practice, this extension is fairly easy, as we will show in the following. In its simplest form, we can assume
that the sampling variability underlying the observed data can be described by a Normal distribution.
This amounts to assuming that

yi ∼ Normal(µi, σ2) (5.4)

µi = β0 + β1X1i + . . . + βKXKi. (5.5)

for i = 1, . . . , n. This notation highlights the probabilistic nature of the assumed regression relationship
between y and X: we are assuming that the linear predictor of Equation 5.1 is on average the best
estimate of the outcome, given a specific “profile”, i.e. a set of values for the observed covariates. But we
do not impose determinism on this relationship: there is a variance, which is determined by the sampling
variability in the observed data and expressed by the population parameter σ2.

à Statistics vs Econometrics

An alternative way of writing the regression model (which is perhaps more common in Econometrics
than it is in Statistics) is to consider

yi = β0 + β1X1i + . . . + βKXKi + εi, with εi ∼ Normal(0, σ2). (5.6)

Equation 5.6 explicitly describes the assumption mentioned above. The quantity εi represents some
kind of “white noise”, or, in other words, a random error, that is centered on 0 and whose variance
basically depends on the population variability.

5.2.1 Bayesian approach

The model parameters for the specification in Equation 5.4 and Equation 5.5 are the coefficients β and
the variance σ2. Thus, in order to perform the Bayesian analysis, we need to specify a suitable prior
distribution for θ = (β, σ2). Ideally, we would specify a joint, multivariate prior p(θ), which would be
used to encode any knowledge on the uncertainty about each parameter, as well as the correlation among
them.

In practice, we often assume some form of (conditional) independence, where the (K + 2) dimensional
distribution p(θ) is factorised into a product of simpler (lower-dimensional) distributions, exploiting some
(alleged!) independence conditions among the parameters. For instance, we may model the regression
coefficients independently on one another and on the population variance

p(θ) = p
(
β, σ2) = p (σ2) K∏

k=0

p(βk).

( Prior independence vs posterior dependence

This is of course just a convenient specification and care should be taken in encoding the actual
prior knowledge into the definition of the prior distribution. Notice however that even if we are
assuming some form of independence in the prior distribution, it is possible that in the posterior
(i.e. after observing the evidence provided by the data), we have some level of correlation among
(some of) the parameters.

There are of course many possible models we can define for the prior, but a convenient (if often relatively

unrealistic) choice is to assume vague Normal priors on the coefficients: (β0, β1, . . . , βK)
iid∼ Normal(0, v)
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with a fixed and large variance v; and a Gamma distribution for the precision τ = 1/σ2 ∼ Gamma(a, b),
for some fixed, small values (a, b)— see for example Gelman et al. (2013).

As mentioned above, it is convenient, particularly within the Bayesian framework to consider a centred
version of the covariates, where X∗0i = X0i and X∗ki = (Xki − X̄k), for k = 1, . . . ,K (notice that we
should not rescale the column of the predictors matrix corresponding to the intercept — in fact we
want to keep it as a vector of ones, to ensure that the matrix multiplication returns the correct values).
For example, using again Galton’s data, if we wanted to include in the model also the mothers’ heights
(indicated as X2i) and use a centred version of the covariates, then the linear predictor would be

µi = β0X
∗
0i + β1X

∗
1i + βKX

∗
2i

= X∗i β

where β = (β0, β1, β2) and the predictors matrix X∗ is

X∗ =



X∗01 X
∗
11 X

∗
21

X∗02 X
∗
12 X

∗
22

X∗03 X
∗
13 X

∗
23

X∗04 X
∗
14 X

∗
24

...
...

...
X∗0n X

∗
1n X

∗
2n


=



1 9.27 2.92
1 9.27 2.92
1 9.27 2.92
1 9.27 2.92
...

...
...

1 −0.733 0.92


.

We may specify a prior for the father’s and mother’s effect that is fairly skeptical, by setting a Normal
distribution, centred around 0 (indicating that on average we are not expecting an impact of these
covariates on the predicted value of their child’s height), with a relatively large variance. For instance we

could set β1, β2
iid∼ Normal(0, sd = 10). Note that in this case, looking at the context, we may argue that

a standard deviation of 10 is already “large enough” to avoid including too much information in the prior.
The blue curve in Figure 5.5 shows a graphical representation of this prior.

As for the intercept β0, given the centring in our model, this represents the expected height of a child whose
mother and father’s heights are at the average in the population. We can use some general knowledge
about people’s heights in Victorian times and, assuming no particular association between the outcome
and the covariate, we may set a Normal prior with mean equal to 65 inches (approximately 165 cm) and
standard deviation equal to 20. Again, we are not imposing a particular value for the intercept, in the
prior, but while using a reasonable choice, we still maintain some substantial uncertainty before seeing
the data. Notice that essentially this prior (correctly!) assigns 0 probability of negative heights — in fact
heights below 20 inches are very unlikely under the model assumed.

Unfortunately, this model is not possible to compute in closed form and so in order to estimate the
posterior distributions for the parameters, we need to resort to a simulation approach (e.g. Markov Chain
Monte Carlo, MCMC — the details are not important here and you will see much more on this if you take
STAT0019). The output of the model is presented in Table 5.2.

Table 5.2: A summary of the posterior distributions for the model parameters

Mean SD 2.5% 97.5%

β0 (intercept) 66.7545 0.1129 66.5296 66.9671
β1 (slope for father’s height) 0.3783 0.0458 0.2862 0.4690
β2 (slope for mothers’s height) 0.2832 0.0489 0.1888 0.3818
σ (population variance) 3.3906 0.0829 3.2328 3.5506
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Figure 5.5: The assumed prior distribution for the regression coefficients. The distribution in black
indicates the prior for the intercept β0. The distribution in blue is the same for β1 and β2. As is possible
to see, most of the probability is included in a relatively large range, approximately between -20 and 20,
indicating large uncertainty in the prior father’s and the mother’s effect

The computer output shows some summary statistics for the estimated posterior distributions of the model
parameters. The posterior mean for the intercept is very close to our prior guess, but the uncertainty in
the overall distribution is massively reduced by the observed data — the 95% interval estimate is indeed
very narrow, ranging from 66.53 to 66.97.

As for the slopes β1 and β2, both have a positive mean and the entire 95% interval estimate is also above
0. This indicates that there seems to be a truly positive relationship between the heights of the parents
and those of their offspring. Nevertheless, the magnitude of the effect is not very large, which explains
the phenomenon so disconcerting for Galton.

We can use a similar reasoning to that shown in Section 4.1 to determine, using the full posterior
distributions, the probability that either β1 or β2 are negative (which would indicate the opposite
relationship). These can be obtained numerically, using the output of the MCMC analysis. As is obvious
from Figure 5.6, there is essentially no probability of either the two slopes being negative.

* Warning

Finally, notice that the coefficients for the father’s height has now changed from the least square
analysis given above. This is possibly due to the influence of the prior distribution, in the Bayesian
analysis. Nevertheless, because we are now including an additional covariate, it is extremely likely
that the effect of the father’s height be indeed modified in comparison to the simpler analysis,
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Figure 5.6: Histograms from the simulated values for the posterior distributions of β1 and β2

simply because of the joint variation brought about by the formal consideration of the mother’s
height.

5.2.2 Likelihood approach

As shown in Section 3.1.2, the likelihood approach proceeds by computing the maximum likelihood
estimator for the model parameters. In this case, using relatively simple algebra, we can prove that the
MLE for the coefficients β = (β0, β1, . . . , βK) are equivalent to the least square solutions (as seen in
Section 3.1.3, the MLE has usually all the good frequentist properties and thus it is often selected as the
best estimator in that framework too).

Expanding on the result shown above, in the most general case for a linear regression, where we consider
K predictors, the MLEs are

β̂0 = ȳ −
(
β̂1X̄1 + . . . + β̂KX̄K

)
= ȳ −

K∑
k=1

βkX̄k (5.7)

β̂1 =
Cov(y,X1)

Var[X1]
(5.8)

...

β̂K =
Cov(y,XK)

Var[XK]
. (5.9)

In addition, the MLE for the population (sometimes referred to as “residual”) variance σ2 is given by

σ̂2 =
RSS

(n−K − 1)
, (5.10)

where:

RSS =
n∑
i=1

(yi − ŷi)2

=
n∑
i=1

(yi − [β0 + β1X1i + β2X2i + . . . + βKXKi])
2
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is the residual sum of squares, i.e. a measure of the “error” we make by estimating the outcome using the
regression line (i.e. the residuals ŷi), instead of the actual observed points (yi); and the denominator of
Equation 5.10 is the degrees of freedom, which in the general case are equal to the number of data points
(n) minus the number of regression coefficients (K + 1, in this case).

In practical terms, matrix algebra can be used to programme these equations more efficiently and
compactly. For example, including again in the model both the fathers’ and the mothers’ heights on the
original scale (i.e. without centring the covariates), then the linear predictor would be

µi = β0X0i + β1X1i + βKX2i

= Xiβ

where β = (β0, β1, β2) and the predictors matrix X is

X =



X01 X11 X21

X02 X12 X22

X03 X13 X23

X04 X14 X24
...

...
...

X0n X1n X2n


=



1 78.5 67.0
1 78.5 67.0
1 78.5 67.0
1 78.5 67.0
...

...
...

1 68.5 65.0


.

Equations 5.7 — 5.9 can be written compactly in matrix algebra using the notation

β̂ = (X>X)−1X>y. (5.11)

à Transpose and inverse matrices

The operator > indicates the transpose of a matrix. So if you have a matrix

X =
(
a b
c d

)
,

then

X> =
(
a c
b d

)
,

i.e. the transpose matrix is constructed by flipping around the rows and the columns (the first
column becomes the first row, the second column becomes the second row, etc.).
Multiplying the transpose of a matrix by the original matrix is equivalent to summing the cross-
products of the values in the matrix

X>X =
(
a c
b d

)
×
(
a b
c d

)
=
(
(a× a + c× c) (a× b + c× d)
(b× a + d× c) (b× b + d× d)

)
=
(
a2 + c2 ab + cd
ba + dc b2 + d2

)
So, if X is the matrix of predictors
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X>X =


X01 X02 . . . X0n

X11 X12 . . . X1n
...

...
. . .

...
XK1 XK2 . . . XKn

×

X01 X11 . . . XK1

X02 X12 . . . XK2
...

...
. . .

...
X0n X1n . . . XKn



=



n∑
i=1

X2
0i

n∑
i=1

X0iX1i . . .

n∑
i=1

X0iXKi

n∑
i=1

X1iX0i

n∑
i=1

X2
1i . . .

n∑
i=1

X1iXKi

...
...

. . .
...

n∑
i=1

XKiX0i

n∑
i=1

XKiX1i . . .

n∑
i=1

X2
Ki


,

which is equivalent to the computation made for the covariance in Equation 5.3. Note that, irrespec-
tive of the original dimension of a matrix, multiplying a transpose by the original matrix always
produces a square matrix (i.e. one with the same number of rows and columns).
The matrix operator −1 is the generalisation of the division operation for numbers. So, much like
for a number x the product xx−1 = x

x = 1, for matrices the inverse is such that for a square matrix
X, pre-multiplying by the inverse matrix produces the identity matrix (i.e. one with ones on the
diagonal and zeros everywhere else).

X−1X = 1 =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 .

Intuitively, Equation 5.11 is made by multiplying the inverse of the sum of squares for the matrixX (which
is proportional to the variance) by the sum of cross-squared between X and y (which is proportional to
the covariance). This is basically the same as constructing the ratio between the covariance of X and y
and the variance of X, exactly as in Equation 5.3.

This matrix algebra can be programmed in R using the commands

# Constructs the matrix of predictors, including the first column of ones
# the second column with the fathers' heights and the third column with
# the mothers' heights, from the original dataset
X=cbind(rep(1,nrow(galton)),galton$Father,galton$Mother)

# Assigns a label 1,2,...,n to each row of the matrix X
rownames(X)=1:nrow(X)
# And then visualises X as in the equation above, e.g. using
X[c(1:4,nrow(X)),]

[,1] [,2] [,3]
1 1 78.5 67
2 1 78.5 67
3 1 78.5 67
4 1 78.5 67
898 1 68.5 65
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# Constructs the vector of outcomes with the children's heights
y=galton$Height
# Now computes the MLE for all the regression coefficients
beta=solve(t(X)%*%X)%*%t(X)%*%y

(in R the built-in command solve(X) is used to compute the inverse of a square matrix X, while the
function t(X) is used to transpose its matrix argument).

The code above returns the following values for the coefficients.

MLE estimate
beta0 22.3097055
beta1 0.3798970
beta2 0.2832145

We can also prove that these are unbiased for the underlying regression coefficients β0, . . . , βK , i.e.

E[β̂0] = β0, E[β̂1] = β1, . . . , E[β̂K] = βK

and, using the theory shown in Chapter 3, that the sampling distribution for the estimators of each β̂k
(for k = 0, . . . ,K) is given by Normal distributions where the mean is of course the underlying “true”
coefficient βk and the variance is given by

Var[βk] = σ̂2 (X>X)−1

— the intuition behind this formula is that we rescale the estimate of the variance of the error εi by the
variance in the covariates to provide the variance of the estimate of the effects (coefficients).

Using matrix notation to compute RSS = (y −Xβ̂)>(y −Xβ̂), in R we can compute these variances
using the following commands

# Computes the Residual Sums of Squares
RSS=t(y-X%*%beta)%*%(y-X%*%beta)
# Computes the estimate of the standard deviation sigma
# NB: "nrow(X)"=number of rows in the matrix X, while
# "ncol(X)"=number of columns in the matrix X
sigma2.hat=as.numeric(RSS/(nrow(X)-ncol(X)))

# Now computes the variance of the coefficients using the formula above
sigma2.beta=sigma2.hat*solve(t(X)%*%X)
# Now squares the elements on the diagonal (i.e. the variances of the three
# coefficients), to obtain the standard deviations
sigma.beta=sqrt(diag(sigma2.beta))

to produce the estimates for the three coefficients in β as below.

MLE estimate sd
beta0 22.3097055 4.30689678
beta1 0.3798970 0.04589120
beta2 0.2832145 0.04913817

At this point, using Equation 3.8, we can substitute the MLE β̂k for θ̂ and the estimate of the standard
deviation of β̂k for σ/

√
n and compute a 95% interval for β̂k as[

β̂k − 1.96
√

Var[β̂k]; β̂k + 1.96
√

Var[β̂k],
]
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which in the current case gives

95% interval for β0 = [22.31− 1.96× 4.31; 22.31 + 1.96× 4.31] = [13.87; 30.75]
95% interval for β1 = [0.38− 1.960.04590.38 + 1.96× 0.0459] = [0.29; 0.47]
95% interval for β2 = [0.283− 1.960.04910.283 + 1.96× 0.0491] = [0.187; 0.38] .

Similarly, because we know what the sampling distribution for each of the three estimates is, we can
compute p−values, for instance against the null hypothesis H0 : β̂k = 0. Notice that this is really relevant
just for the slopes (i.e. the effects of the covariates), because if the resulting p−value is small, then we
would have determined some evidence against the hypothesis of “no effect” (e.g. of the fathers’ heights
on their children’s height).

Recalling Equation 4.2, we can prove that, under H0,

T =
β̂k − 0

Var[β̂k]
∼ t(0, 1, (n−K − 1)). (5.12)

Because all the β̂k > 0, then the relevant tail-area probability is the one to the right of the underlying t
sampling distribution and so the p−values are computed in R as the following

p-value
beta0 0.0000001371088497591075
beta1 0.0000000000000002260111
beta2 0.0000000056616890636972

(recall that the option lower.tail=FALSE computes the area to the right of a given distribution).

Because the p−values are all very small (and certainly much lower than the common threshold of 0.05),
we can claim very strong evidence against H0 and so, in a purely Fisherian interpretation, we would
advocate the presence of some effect of both fathers’ and mothers’ heights on the children’s height. In
common parlance, the three coefficients are deemed to be “highly significant” at the 0.05 level.

This results is also consistent with the analysis of the 95% confidence intervals (cfr. Section 4.4.3). The
p−values are all very small — and at the same time, all the 95% confidence intervals exclude the value 0,
indicating that the results are “significant” (and in this case, positive).

Of course, in practice, you will never need to make matrix calculations by hand — or even programme
them directly. Most likely you will use routines and programmes available in statistical software to do
the regression analysis. For example, in R we can compute the regression coefficients using the built-in
function lm, as in the following code.

# Runs the function "lm" to run the model including "Height" as the reponse
# (that is the variable to the left of the twiddle symbol "~"), while "Father"
# and "Mother" (the variables to the right of the twiddle) are the covariates.
# These are recorded in the dataset called "galton"
m1=lm(formula=Height~Father+Mother,data=galton)
# Now displays the output
summary(m1)

Call:
lm(formula = Height ~ Father + Mother, data = galton)

Residuals:
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Min 1Q Median 3Q Max
-9.136 -2.700 -0.181 2.768 11.689

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 22.30971 4.30690 5.180 2.74e-07 ***
Father 0.37990 0.04589 8.278 4.52e-16 ***
Mother 0.28321 0.04914 5.764 1.13e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.386 on 895 degrees of freedom
Multiple R-squared: 0.1089, Adjusted R-squared: 0.1069
F-statistic: 54.69 on 2 and 895 DF, p-value: < 2.2e-16

The standard output reported by R includes the estimates for the coefficients (the column labelled as
Estimate), their standard error based on the suitable sampling distributions (the column labelled Std.
Error) and the value of the test statistic T of Equation 5.12 in the column labelled as t value.

Notice that by default, lm reports the p−value computed for an implicit alternative hypothesisH1 : βk 6= 0
(see the discussion in Section 4.4.1). For this reason, the p−values reported by lm in the column labelled
as Pr(>|t|) are different than the one we have computed above. If we multiply by 2 the p−values above
(to account for the difference than implicit in the alternative hypothesis, as opposed to simply the tail-area
probability under the sampling distribution in correspondence with H0), we obtain

p-value
beta0 2.742177e-07
beta1 4.520223e-16
beta2 1.132338e-08

which are in fact consistent with the table reported by lm. To highlight the fact that these p−value are
highly significant, lm uses a “star-based” rating system — where *** indicates that a p−value is between
0 and 0.001, ** that it is between 0.001 and 0.01, * that it is between 0.01 and 0.05 and . that it is
between 0.05 and 0.1.

* Warning

The analysis based on the MLE and p−values shows some slight discrepancies with the Bayesian
analysis shown above. By and large the results are extremely consistent — notice that because
of the different scaling of the covariate, the intercepts β0 are not directly comparable. As for the
slopes (which, on the contrary are directly comparable), the Bayesian analysis estimates the effect
of fathers’ height to be 0.3783, while the frequentist model indicates a value of 0.3799. For the
mothers’ height effect, the Bayesian model estimates 0.2832, while the MLE-based analysis indicates
that it is 0.2832. More importantly, all the coefficients are estimated with large precision, so that
the entire intervals are above 0, in both approaches.
In this case, because we have a relatively large dataset, with evidence that consistently points
towards the same direction; and we have used relatively vague priors, the numerical outputs of the
two approaches are highly comparable. But this need not be the case in general, particularly when
the data size is small and they provide only limited evidence. From the Bayesian point of view, this
is perfectly reasonable: if we do not have overwhelming evidence, it is sensible that including prior
knowledge does exert some influence on the final decisions.
This feature is also particular important when we need to complement limited evidence from
observed data (e.g. in terms of short follow up, or large non-compliance).
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5.3 Generalised linear regression

One of the main assumptions underlying the linear regression analysis seen above when viewed as a
statistical model is that the underlying outcome is suitably modelled using a Normal distribution — this
implies that we can assume that Y is reasonably symmetric, continuous and unbounded, i.e. it can, at
least theoretically, take on values in the range (−∞;∞).

However, as we have seen in Chapter 2, there are many cases in which variables are not suitably described
by a Normal distribution — notably Bernoulli/Binomial or Poisson counts, but (as you will see if you take
STAT0019) also other variables describing skewed phenomena (e.g. costs or times to event). In these
instances, we can slightly extend the set up of Equation 5.4 and Equation 5.5 to account for this extra
complexity. This can be accomplished using the following structure.

yi
iid∼ p(yi | θi,Xi) is the model to describe sampling variability for the outcome

θi = (µi,α) is the vector of model parameters
µi = E[Yi |Xi] is the mean of the outcome given the covariates Xi

α is a vector of other potential model parameters, e.g. variances, etc.
(NB this may or may not exist for a specific model)

g(µi) =Xiβ is the linear predictor on the scale defined by g(·).

(5.13)

à Link functions

A function such that g(x) = x is referred to as the identity function. We can see that linear
regression, presented in Section 5.2, is in fact a special case of the wider class of structures
described in Equation 5.13, which is often referred to as Generalised Linear Models (GLMs). A
GLM in which p(yi | θ,X) = Normal(µi, σ2) and g(µi) = µi = E[Y | Xi] = Xiβ is the linear
regression model of Equation 5.4 and Equation 5.5.

Upon varying the choice of the distribution p(·) and the transformation function g(·), we can model
several outcomes.

5.3.1 Logistic regression

When the outcome is a binary or Binomial variable, we know that the mean θ is the probability that
a random individual in the relevant population experiences the event of interest. Thus, by necessity,
θi = E[Yi |Xi] is bounded by 0 from below and 1 from above (i.e. it cannot be below 0 or above 1). For
this reason, we should not use a linear regression to model this type of outcome (although sometimes
this is done, particularly in Econometrics, in the context of “two-stage least square analysis”, which you
may encounter during your studies).

One convenient way to model binary outcomes in a regression context is to use the general structure of

Equation 5.13, where the outcome is modelled using yi
iid∼ Bernoulli(θi) and

g(θi) = g (E[Yi |Xi]) = logit(θi) = log
(

θi
1− θi

)
=Xiβ (5.14)

(notice that in the Bernoulli model there is only one parameter and so we indicate here θ = θ).

Equation 5.14 is referred to as logistic regression. Figure 5.7 shows graphically the mapping from the
original range of the parameter θ, on the x−axis, to the rescaled parameter g(θ) = logit(θ), on the
y−axis. As is possible to see, the original range is mapped onto the whole set of numbers from −∞ (in
correspondence of the value θ = 0) to∞ (for θ = 1).
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Registered S3 methods overwritten by 'bmhe':
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Figure 5.7: Graphical description of the shape and features of the logit function. For θ → 0, then
logit(θ)→ −∞, while for θ → 1, then logit(θ)→ +∞. For θ = 0.5, then logit(θ) = 0

This is obvious by noting that

θ = 0 ⇒ log
(

θ

1− θ

)
= log

(
0
1

)
= log(0)→ −∞

and

θ = 1 ⇒ log
(

θ

1− θ

)
= log

(
1
0

)
= log(∞)→∞.

In addition, the graph in Figure 5.7 shows that the resulting function of θ is reasonably symmetric around
the central point (θ = 0.5).

à Odds vs probabilities

If θ represents a probability (e.g. that a given event E happens), the quantity

O =
(

θ

1− θ

)
=

Pr(E)
1− Pr(E)
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is called the odds for the eventE and it represents a measure of how more likelyE is to happen than
not. If Pr(E) = θ = 0.5, then O = 0.5/0.5 = 1. If Pr(E) is small, then O is also very small, while
if E is very likely, then O is increasingly bigger. The range in which O is defined is characterised
by the extreme values 0 (in correspondence of which E is impossible, i.e. Pr(E) = 0 and thus
O = 0/1 = 0) and∞, when E is certain, i.e. Pr(E) = 1 and thus O = 1/0 =∞.

The quantity log
(

θ

1− θ

)
= log O is the log-odds for the event E. By applying the log transforma-

tion to O, we map its range in the interval [log(0) = −∞; log(∞) =∞].
Equation 5.14 clarifies that logistic regression implies that we are modelling the log-odds using a
linear predictor or, in other words, that we are assuming a linear relationship between the mean
outcome and the covariates, on the log odds scale.

For example, consider again Galton’s data, but this time, our outcome is given by a new variable, which
takes value 1 if the original child’s height is above a threshold of 71 inches (180 cm) and 0 otherwise. We
can create the suitable data in R using the following command.

# Creates a variable "y2" taking value 1 if the original child's height > median
y2=ifelse(galton$Height>71,1,0)
# Summarises the new variable
table(y2)

y2
0 1

801 97

As is possible to see, nearly 10.80% (i.e. 97/898) of the sample “experiences the event”, i.e. is taller than
the set threshold.

( Logistic regression coefficients

The interpretation of the regression coefficients in a logistic regression needs a bit of care, given
the change in the scale we define for the linear predictor.
The intercept is still related to the expected mean of the outcome for the profile of covariates all set
to 0. So, in Galton’s example, centering the covariates for simplicity of interpretation, this would be
the expected value for the height of a child of “average” father and mother (in terms of height).
However, this time the expected mean of the outcome is the probability of the underlying event of
interest, e.g. that a child is taller than the threshold of 71 inches. So, for an individual with centred
covariates set to 0 (e.g. for a child whose parents’ centred height is 0), then the regression line (on
the log-odds scale) is simply

logit(θi) = log
(

θi
1− θi

)
= β0

and thus, recalling that exp (log (x)) = x, we can invert the logit function to give

exp
[
log
(

θi
1−θi

)]
= exp (β0)⇒

θi = exp (β0) (1− θi)⇒
θi [1 + exp (β0)] = exp (β0)⇒

θi =
exp (β0)

1 + exp (β0)
(5.15)
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(the right hand side of Equation 5.15 is often referred to as the expit or inverse logit transformation).
This particular rescaling of intercept represents the expected mean outcome (= the probability that
the event under study occurs, for an individual with covariates set to 0 — or to the overall average,
if we are centring them).
The “slope” has also a slightly different interpretation in a logistic regression. We have seen before
that a generic slope βk represents the difference in the expected outcome for two individuals whose
k−th covariate varies by one unit, “all else being equal”, i.e. where all the other covariates are set
to the same value.
For instance, if in the current example we compared two fathers, one for whom the centred height
was 0 (= 69.23 inches) and one for whom the centred height was 1 (= 70.23 inches), then we
would have

logit(θ | X∗1 = 0) = β0 + β1 × 0 = β0,

for the first one; and
logit(θ | X∗1 = 1) = β0 + β1 × 1,

for the second one. The difference between the expected outcomes would then be

∆X = logit(θ | X∗1 = 1)− logit(θ | X∗1 = 0)

= log
(

θ

1− θ
| X∗1 = 1

)
− log

(
θ

1− θ
| X∗1 = 0

)
= log

(
θ1

1− θ1

)
− log

(
θ0

1− θ0

)
= (β0 + β1)− (β0)
= β1,

indicating the probability of the event in correspondence of the covariate profile X∗1 = j (for
j = 0, 1) with the notation θj , for simplicity.
Recalling that for any two positive numbers (a, b) we can show that log(a)− log(b) = log (a/b), we
can then write

log
(

θ1

1− θ1

/
θ0

1− θ0

)
= β1

The quantity
(

θ1

1− θ1

/
θ0

1− θ0

)
is the ratio of two odds — this is called the odds ratio (OR) and

describes how much more likely an event E is to happen among those individuals who present the
characteristic associated with X∗1 = 1 (which happens with probability θ1) than among those who
have X∗1 = 0 (which is associated with probability θ0). Taking the log of this quantity gives the
log-OR, which we can now see is the same as the value of the slope β1.
Theoretically, the log-OR ranges between −∞ and +∞, with larger values indicating that the event
is more likely to happen when individuals are associated with larger values of the covariate. In
this case, the taller the father, the more likely their child to be taller than 71 inches, by an amount
exp(β1).
In general, negative values for a log-OR indicate that the covariate is negatively associated with
the outcome, while positive log-OR suggest that the covariate is positively associated with the
outcome. If we transform this on to the natural scale by exponentiating the log-OR, which means
that OR∈ [0,∞), we can interpret an OR > 1 to indicate that the covariate has a positive effect on
the (probability of the) outcome, while if OR < 1 then the opposite is true. When log-OR = 0 (or,
equivalently OR = 1), then there is no association between the covariate and the outcome.
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5.3.1.1 Bayesian approach

In a Bayesian context, theoretically the model of Equation 5.14 does not pose particular problems: we
need to specify prior distributions on the coefficients β and, much as in the case of linear regression,
we can use Normal distributions — note that Equation 5.14 is defined on the log-odds scale, which
as suggested above, does have an unbounded range, which makes it reasonable to assume a Normal
distribution for the coefficients.

Equation 5.15 is helpful when we want to set up a prior distribution for β0 in a meaningful way for the
main parameter θ. For example, imagine we wanted to encode the assumption that, before getting to see
any data, we expected only a 5 to 20% chance for a random person in the population to be taller than
71 inches. If we set a Normal(logit(0.105),sd=0.4) for β0, then we can check that what we are actually
implying is a prior for the underlying “baseline” probability (i.e. for the child of “average” parents) as the
one represented in Figure 5.8.
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Figure 5.8: The prior distribution for β0 in panel (a) is used to encode the information that θ is most
likely between around 0.05 and 0.2, when X∗1i = X

∗
2i = 0, indicated by the dark blue horizontal line at

the bottom on panel (b)

The dark blue horizontal line just above the x−axis in panel (b) indicates the 95% prior interval estimate
for the parameter θ, which is derived by the prior depicted in panel (a). As is possible to see, the current
choice for the mean and standard deviation of the Normal prior do induce a 95% interval covering
approximately the required range. The values for the parameters of the Normal prior distribution for β0

can be found by trial-and-error, e.g. using the following R code:

# Defines the mean and sd of the prior
b0=log(0.105/(1-0.105))
s0=0.4
# Simulates 10000 values from the prior
beta0=rnorm(10000,b0,s0)
# Rescales the prior to the scale of the main parameter theta
theta=exp(beta0)/(1+exp(beta0))
# Checks the implied 95% interval estimate for theta
cbind(quantile(theta,.025),quantile(theta,.975))

[,1] [,2]
2.5% 0.05049197 0.2023662
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and changing the imposed value for b0 and s0 until the resulting approximate 95% interval returns values
close enough to the required limits (5-20%). This procedure is often referred to as forward sampling.
Note that setting some mildly “informative” prior for the intercept may be helpful in stabilising the
inference, particularly when the data are made by only few records (i.e. small sample size), or, even more
importantly, when the number of observed “successes” is small.

As for the slopes, we may elicit some informative prior and encode genuine prior knowledge in the model
— for example, we may have some strong belief in a given treatment effect and thus we may set up a
prior for the corresponding coefficient that is concentrated above 0. This would indicate a large prior
probability that the resulting OR is greater than 1 and thus a positive association between the treatment
and the outcome. However, in general terms, we may be unwilling to specifiy too strong a prior on a
given treatment effect because we would like to be a bit more conservative and let the data drive the
inference on this particular relationship.

For example we could set up β1, β2
iid∼ Normal(0, sd = 2). This assumes that, before seeing any data,

we are not expecting a particular effect of either father’s or mother’s height on the probability of a child
being taller than 71 inches (because these distributions are centred around 0 — recall that β1 and β2

represent the log-ORs!). However, we are implying some variance around it to guarantee the possibility
that the effect is either positive or negative.

Notice that we are imposing a standard deviation of 2 — you may think that this is rather strict and we
are in fact including some strong prior on these distributions. However, recall that the slopes are defined
on the log-odds scale and so a value of 2 for a standard deviation is actually pretty large, when rescaled
back to the original probability scale. Adapting Equation 3.8, we know that for a Normal distribution
with mean 0 and standard deviation of 5, 95% of the probability is approximately included in the interval
[−1.96× 2; 1.96× 2] = [−3.92; 3.92], which when we map back on to the probability scale applying the
inverse logit transformation implies a prior 95% interval for the OR of [0.0198; 50.40]. That is extremely
vague!

( The “Parachute effect”

While we do not want to impose too strong priors on the “treatment effect”, there is much information
that we can use to restrict the reasonable range of a log-OR.
For instance, consider an experiment in which you test the effectiveness of parachutes, when
jumping off a flying plane. You define your outcome Y as 0 if the individual jumps off the plane
and dies and 1 if they survive. You also have a covariate Xi taking value 1 if individual i is given a
parachute and 0 otherwise.
In a situation such as this, you may expect the treatment to have a very large effect — almost
everyone with a parachute can be reasonably expected to survive, while almost (or probably
just!) everyone without one is most likely to die. So if you define θ1 = Pr(Y = 1 | X = 1) and
θ0 = Pr(Y = 1 | X = 0), we could reasonably estimate something like θ1 = 0.9 and θ0 = 0.1 (the
actual numbers are irrelevant — but the magnitude is important and arguably realistic). Thus, in
this case the OR would be

OR =
θ1

1− θ1

/
θ0

1− θ0

=
0.9

1− 0.9

/
0.1

1− 0.1

=
0.9
0.1

/
0.1
0.9

= 9
/

1
9
= 81.

This means that people with a parachute are 81 times more likely to survive the jump off the
plane than those without a parachute. This massive OR comes about, of course, because of the
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assumptions we are making about such a large treatment effect — almost everyone without the
parachute dies, while almost everyone with survives. In a case such as this, we may be prepared to
believe a very large OR. But in most cases, interventions do not have such dramatic effects. And
thus, it is reasonable to imagine that ORs greater than 3 or perhaps 4 are already relatively unlikely
to be observed in practice!

Interestingly, there is no closed form for the posterior distributions of the model parameters, in a logistic
regression. Thus we need to resort to simulations, e.g. MCMC. The details of the MCMC model used to
run the analysis are not important here, but the results are summarised in Table 5.3.

Table 5.3: A summary of the posterior distributions for the model parameters

Mean SD 2.5% 97.5%

β0 (intercept) -0.0719 0.0687 -0.2010 0.0605
β1 (logOR for father’s height) 0.1676 0.0303 0.1087 0.2283
β2 (logOR for mothers’s height) 0.0987 0.0304 0.0376 0.1595

In a logistic regression, typically we do not worry too much about the intercept (given the caveat above
and the rescaling necessary to make sense of its value in terms of the underlying probability of “success”).
As for the log-ORs, we can see that both the covariates are associated with a positive point estimate and
both the entire 95% interval estimates are also positive, thus indicating a probability ≥ 0.95 that the
posterior distributions of β1 and β2 are positive.

Of course, once we have the simulations for the log-OR, we can simply exponentiate each simulated
values to obtain a full posterior distribution for the ORs. So for example if we had stored the output of
the MCMC model in two suitable objects called beta1 and beta2, then we could simply rescale them to
compute numerically probabilities associated with them, for example as in the following R code.

# Constructs the ORs from the original simulations obtained by the model
OR1=exp(beta1)
OR2=exp(beta2)
# Tail-area probability to estimate Pr(OR1<1). This is the proportion of
# simulations for OR1 that are below 1
sum(OR1<1)/length(OR1)

[1] 0

# Tail-area probability to estimate Pr(OR2<1). This is the proportion of
# simulations for OR2 that are below 1
sum(OR2<1)/length(OR2)

[1] 0.0005

Once the objects OR1 and OR2 are available, we could plot histograms of the posterior distributions, as
shown in Figure 5.9. As is possible to see, in both cases, none or very little of the posterior distribution is
below 1, indicating a “highly significant” result in terms of the positive association between the covariates
and the outcome.
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(a) OR for the father’s height effect
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(b) OR for the mother’s height effect

Figure 5.9: Histograms for the rescaled posterior distributions for ORs

5.3.1.2 Likelihood approach

If we consider a Likelihod approach, the idea is of course to maximise the likelihood function for the
model parameters, to determine the MLE, which, again, would be considered a very good candidate for
optimality even under a pure Frequentist approach. Unfortunately, for a logistic regression model, it is not
possible to obtain maximum values analytically. Thus, we resort to numerical maximisation — usually
based on a clever approximation method referred to as Newton-Rapson algorithm.

In practice, we do not need to programme this algorithm ourselves, but rather we rely on existing routines
or programmes. For example R has a built-in command glm, that can be used to obtain the MLEs for
GLMs.

The following code shows how to perform a GLM analysis for the model shown in Section 5.3.1.1 — all
the assumptions are identical, except of course that we do not specify any prior distribution in this case.

Call:
glm(formula = formula, family = "binomial", data = data.frame(y2,

X))

Deviance Residuals:
Min 1Q Median 3Q Max

-1.7428 -1.1254 -0.7077 1.1306 1.6407

Coefficients:
Estimate Std. Error z value Pr(>|z|)

XIntercept -0.008175 0.068537 -0.119 0.90506
XFather 0.166414 0.029209 5.697 0.0000000122 ***
XMother 0.097989 0.030380 3.225 0.00126 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1244.9 on 898 degrees of freedom
Residual deviance: 1197.1 on 895 degrees of freedom
AIC: 1203.1
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Number of Fisher Scoring iterations: 4

The computer output is fairly similar to that presented for the outcome of lm in the case of a linear
regression. The main parameters are presented in the core of the table in terms of the point estimate
(labelled as Estimate), the standard deviation (Std. Error), the value of the test statistic used to test
the null hypothesis that each is equal to 0 (z value) and the “two-sided” p−value (indicated as Pr(>|z|)
— see the discussion at the end of Section 5.2.2).

In this particular instance, the results are fairly similar to the numerical output of the Bayesian analysis.
The intercept shows some slight differences — this is mainly due to the informative prior used above.
However, for the two slopes, given that the prior was centred around 0 and in fact fairly vague, the
effects of the covariates is estimated to very similar numerical values. Even the analysis of the p−values is
consistent with the Bayesian analysis, in this case — the effect of the father’s height is more “significant”,
much as the posterior distribution for β1 had shown a lower probability of being less than 0 in the Bayesian
model.

Notice that unlike in the case of the linear regression, the p−values are computed this time based on a
Wald test (see Section 4.4.4), computed as the ratio of the MLE minus the null value (0, in this case) to
its standard deviation. So for example, in this case, the test statistic for X2 (the mother’s effect) can be
computed as

W =
θ̂ − 0√
Var[θ̂]

=
0.098

0.0304
= 3.225,

as shown in the computer output. We can compare this to the standard Normal to determine the p−value.
In particular, as mentioned above, R constructs the two-sided version of the p−value, essentially using
the following code.

# Stores the summary of the model output in the object "s"
s=summary(model)
# Constructs the W statistic using the elements of the object "s"
w=s$coefficients[3,1]/s$coefficients[3,2]
# Computes the two-sided p-value based on Normal(0,1) approximate distribution
P=2*(pnorm(q=w,mean=0,sd=1,lower.tail=FALSE))
# Prints the output (which is the same as in the computer output)
P

[1] 0.001257877

5.3.2 Poisson and other GLMs

Logistic regression is only one of the models embedded in the wider family of GLMs. The general principles
are essentially the same in all circumstances — specify a distribution p(yi | θi,Xi) and a suitable map
from the natural scale of the mean to an unbounded range, where we can claim at least approximately
linearity in the covariates.

Another common example is Poisson regression, where we have observed data on the outcome

y1, . . . , yn
iid∼ Poisson(θi). Here the parameter θi represents at once the mean and the variance of

the underlying Poisson distribution. Because θi ≥ 0 (as it represents a rate, i.e. the intensity with which
the counts are observed), a suitable transformation is simply to take the log and model

g(θi) = g (E[Yi |Xi]) = log(θi) =Xiβ. (5.16)
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In comparison to logistic regression, the interpretation of the coefficients is slightly simpler: using a
reasoning similar to that shown for the intercept and slope of a logistic regression, we can show that, in
the case of a Poisson GLM:

• The intercept β0 is the log rate for an individual whose covariates are set to 0;
• The slope βk is the log relative risk corresponding to increasing the covariate by one unit. So if you

compare two individuals, the first of whom has the value of the covariate Xk = 1 and the other for

whom Xk = 0, then βk = log
(
θ1
θ0

)
, where θj is the rate associated with a covariates profile of Xk = j,

for j = 0, 1.

The log-linear model embedded in the Poisson structure can be applied to several other distributions
to describe sampling variability in the observed outcome. Other relevant examples include the case of
time-to-event outcomes, for which suitable models are Weibull or Gamma, among others. Because all of
these are defined as positive, continous variables, their mean is also positive and so it is useful to rescale
the linear predictor on the log scale.
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