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VoI: Basic idea and relevant measures

• A new study will provide new data
– Reducing (or even eliminating) uncertainty in a subset of model parameters

• Update the cost-effectiveness model
– If the optimal decision changes, gain in monetary net benefit (NB = utility) from using

new optimal treatment
– If optimal decision unchanged, no gain in NB

• Expected VOI is the average gain in NB

1 Expected Value of Perfect Information (EVPI)
– Value of completely resolving uncertainty in all input parameters to decision model
– Infinite-sized long-term follow-up trial measuring everything!
– Gives an upper-bound on the value of new study — if EVPI is low, suggests we can

make our decision based on existing information

2 Expected Value of Partial Perfect Information (EVPPI)
– Value of eliminating uncertainty in subset of input parameters to decision model
– Infinite-sized trial measuring relative effects on 1-year survival
– Useful to identify which parameters responsible for decision uncertainty

3 Expected Value of Sample Information (EVSI)
– Value of reducing uncertainty by conducting a study of given design
– Can compare the benefits and costs of a study with given design
– Is the proposed study likely to be a good use of resources? What is the optimal design?
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Summarising PSA + Research priority: Expected Value of Partial Perfect Information

• θ = all the model parameters; can be split into two subsets
– The “parameters of interest” φ, e.g. prevalence of a disease, HRQL measures, length

of stay in hospital, ...
– The “remaining parameters” ψ, e.g. cost of treatment with other established

medications,

• We are interested in quantifying the value of gaining more information on φ, while
leaving the current level of uncertainty on ψ unchanged

• In formulæ:
– First, consider the expected utility (EU) if we were able to learn φ but not ψ
– If we knew φ perfectly, best decision = the maximum of this EU
– Of course we cannot learn φ perfectly, so take the expected value
– And compare this with the maximum expected utility overall
– This is the EVPPI!

EVPPI = Eφ

[
max
t

Eψ|φ [NBt(θ)]

]
−max

t
Eθ [NBt(θ)]

• That’s the difficult part!
– Can do nested Monte Carlo, but takes forever to get accurate results
– Recent methods based on Gaussian Process regression very efficient & quick!

Strong et al Medical Decision Making. 2014; 34(3): 311-26. http://savi.shef.ac.uk/SAVI/
Heath et al Statistics in Medicine. 2016; 35(23): 4264-4280. https://egon.stats.ucl.ac.uk/projects/EVSI/
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EVPPI Brute force — Nested Monte Carlo

Assuming only two interventions, can consider INB(θ) = NB1(θ)− NB0(θ)
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Thanks to Mark Strong (slide stolen from “Summer School in Bayesian methods in health economics”)
www.statistica.it/gianluca/teaching/summer-school
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EVPPI Model as a regression problem

• Can model as a regression problem

NBt(θ) = Eψ|φ [NBt(θ)] + ε, with ε ∼ Normal(0, σ2
ε)

= gt(φ) + ε

“Data”: simulations for NBt(θ) as “response”
• “Data”: simulations for φ as “covariates”

• NB: Only need S data points (= PSA simulations), instead of Sφ × Sψ!

π0 ρ β0 . . . σ η γ NB0(θ) NB1(θ)

0.365 0.076 0.243 . . . 0.622 0.001 0.162 19 214 751 19 647 706

0.421 0.024 0.115 . . . 0.519 0.010 0.134 17 165 526 17 163 407

0.125 0.017 0.420 . . . 0.482 0.007 0.149 18 710 928 16 458 433

0.117 0.073 0.419 . . . 0.317 0.003 0.120 16 991 321 18 497 648

0.481 0.008 0.176 . . . 0.497 0.004 0.191 19 772 898 18 662 329

0.163 0.127 0.227 . . . 0.613 0.083 0.004 17 106 136 18 983 331

. . . . . . . . . . . .

0.354 0.067 0.318 . . . 0.519 0.063 0.117 18 043 921 16 470 805

“covariates” “response” “response”

Strong et al Medical Decision Making. 2014; 34(3): 311-26
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EVPPI Model as a regression problem
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EVPPI Model as a regression problem
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EVPPI Model as a regression problem
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EVPPI Model as a regression problem

• Can model as a regression problem

NBt(θ) = Eψ|φ [NBt(θ)] + ε, with ε ∼ Normal(0, σ2
ε)

= gt(φ) + ε

“Data”: simulations for NBt(θ) as “response”
• “Data”: simulations for φ as “covariates”

• Once the functions gt(φ) are estimated, then can approximate

EVPPI = Eφ
[
max
t

Eψ|φ [NBt(θ)]
]
−max

t
Eθ [NBt(θ)]

≈ 1

S

S∑
s=1

max
t
ĝt(φs)−max

t

1

S

S∑
s=1

ĝt(φs)

• NB: gt(φ) can be complex, so need to use flexible regression methods

– GAMs: gt(φ) =

Qφ∑
q=1

ht(φsq) ht(·) = smooth functions (cubic polynomials)

very fast, but only work if number of important parameters Qφ ≤ 5 (interactions
increase model size exponentially!)

– If P > 5, can use Gaussian Process regression
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EVPPI via GP regression

Model 
NBt(θ1)
NBt(θ2)

...
NBt(θS)

 := NBt ∼ Normal(Hβ,CExp + σ2
εI)

H =


1 φ11 · · · φ1P

1 φ21 · · · φ2P

...
. . .

1 φS1 · · · φSP

 and CExp(r, s) = σ2 exp

[
P∑
p=1

(
φrp − φsp

δp

)2
]

• Parameters: β, δ, σ2, σ2
ε

• Very flexible structure — good approximation level

• Can use conjugate priors + numerical optimisation, but can still be very slow —
computational cost in the order of S3 (involves inversion of a dense covariance
matrix)
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EVPPI via GP regression — but faster

1 Build from ideas in spatial statistics and use a Matérn covariance function

CM(r, s) =
σ2

Γ(ν)2ν−1
(κ‖φr − φs‖)νKν(κ‖φr − φs‖)

– Fewer parameters, but still implies a dense covariance matrix
– But: can use efficient algorithms to solve Stochastic Partial Differential Equations

(SPDE) to approximate it — with computational cost ∝ S3/2!

2 Re-formulate the model as

NBt ∼ Normal(Hβ,CM + σ2
εI)

∼ Normal(Hβ + f(ω), σ2
εI)

– f(ω) are a set of “spatially structured” effects, with ω ∼ Normal
(
0,Q−1(ξ)

)
– Q(ξ) is a sparse precision matrix determined by the SPDE solution

3 Crucially, if we set a sparse Gaussian prior on β, this is a Latent Gaussian model ⇒
can be estimated using super-fast Integrated Nested Laplace Approximation
(INLA)

NB: Both methods implemented in the R package BCEA (Bayesian Cost-Effectiveness Analysis)
http://www.statistica.it/gianluca/BCEA https://github.com/giabaio/BCEA

Heath et al Stats in Med. 2016; 35(23): 4264-4280; Lindgren et al JRSS/B. 2011; 73(4): 423-498; Rue et al JRSS/B. 2009; 71: 319-392
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Lost in space

• In a “proper” spatial problem, data are observed at a bivariate grid of points
– Points that are closer tend to be more correlated than points further apart
– The INLA-SPDE procedure builds a grid approximation of the underlying bidimensional

space
– Points not on the grid are estimated by interpolation — deriving a full surface
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Lost in space

• In a “proper” spatial problem, data are observed at a bivariate grid of points
– Points that are closer tend to be more correlated than points further apart
– The INLA-SPDE procedure builds a grid approximation of the underlying bidimensional

space
– Points not on the grid are estimated by interpolation — deriving a full surface

• In our case, data are observed on a high-dimensional space, with no proper “spatial”
interpretation!

• Need to use some form of dimensionality reduction to project the P -dimensional
space of φ to a 2-dimensional space

– Simple solution: use PCA to preserve Euclidean distances and thus capture the
“spatial” correlation across the elements of φ

– Even better, regression-based dimension reduction method: Principal Fitted
Components

1 Estimate the function R(φ) : P → d so that NBt ⊥⊥ φ | R(φ)
2 “Project” the P−dimensional information contained in φ to the d−dimensional

function R(·)
3 Ideally, d << P — in fact, would like d ≤ 2

– Computational cost is negligible
– Can use model-fitting statistics (eg AIC) to determine the “best” model for given

choices of d (= 2, 3, . . .)
– NB: if the AIC suggests d > 2 then EVPPI estimates likely to be biased!
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Examples SAVI
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• Fictional decision tree model with correlated parameters

• 2 treatment options and overall 19 parameters

• Parameters simulated from multivariate Normal distribution, so can compute exact EVPPI

Heath et al Statistics in Medicine. 2016; 35(23): 4264-4280
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Examples Vaccine
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• Cost-effectiveness model for influenza vaccine based on evidence synthesis

• 2 treatment options and overall 63 parameters

• Model not available in closed form (needs MCMC simulations)

Heath et al Statistics in Medicine. 2016; 35(23): 4264-4280
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Breaking bad...

Breast cancer screening (Welton et al. 2008. JRSS/A)

• Multi-decision model developed for the UK setting, with 4 interventions

• Complex evidence synthesis for 6 parameters — highly structured!
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The fix!

• Can relatively easily modify the basic structure of the model, e.g. include interaction
terms to make Hβ non-linear

β0 + β1φ1s + β2φ2s + β3φ3s + β4φ1sφ2s + β5φ1sφ3s + β6φ2sφ3s
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Gianluca Baio (UCL) Quick & clean VoI CHE York, 19 Sept 2018 11 / 22



Research priority: Expected Value of Sample Information

• EVSI measures the value of reducing uncertainty by running a study of a given design

• Can compare the benefits and costs of a study with given design
– To see if a proposed study likely to be a good use of resources
– To find the optimal study design

Literature Review

Clinical Trials

Expert Opinion

Model Inputs

θ

Value of Optimal
Treatment: $C

Current Decision
Making Process

Potential
Study

“Posterior”
Model Inputs

θ | X

Value of Optimal
Treatment: $F

VSI = $F - $C

One Possible Future
Decision Making ProcessPrior

Data

X | θ

θ define
model for X

Economic
Model
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Research priority: Expected Value of Sample Information

• EVSI measures the value of reducing uncertainty by running a study of a given design

• Can compare the benefits and costs of a study with given design
– To see if a proposed study likely to be a good use of resources
– To find the optimal study design

EVSI = EX


max
t

Eθ|X [NBt(θ)]︸ ︷︷ ︸
Value of decision based on

sample information
(for a given study design)


− max

t
Eθ [NBt(θ)]︸ ︷︷ ︸

Value of decision based on
current information

Prior predictive
distribution

(pre-posterior)

Posterior given data X

• Computationally complex
– Requires specific knowledge of the model for (future/hypothetical) data collection
– Again, recent methods have improved efficiency

• Can be used to drive design of new study (eg sample size calculations)
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Research priority: Expected Value of Sample Information

• EVSI measures the value of reducing uncertainty by running a study of a given design

• Can compare the benefits and costs of a study with given design
– To see if a proposed study likely to be a good use of resources
– To find the optimal study design

EVSI = EX


max
t

Eθ|X [NBt(θ)]︸ ︷︷ ︸
Value of decision based on

sample information
(for a given study design)


− max

t
Eθ [NBt(θ)]︸ ︷︷ ︸

Value of decision based on
current information

Prior predictive
distribution

(pre-posterior)

Posterior given data X

• Assuming only two interventions, can re-express as

EVSI = EX
[
max

{
0,Eθ|X [INB(θ)]

}]
−max {0,Eθ [INB(θ)]}

µX
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Nested MCMC Brute force...

New study sample size: N = 2

EX

[
µX

]

p
(
µX

)
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Nested MCMC Brute force...

New study sample size: N = 10

EX

[
µX

]

p
(
µX

)
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Nested MCMC Brute force...

A counter intuitive relationship...
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Moment matching

Objective: Estimate the distribution p(µX) with µX = Eθ|X [INB(θ)]

• That’s the hard part to estimate the EVSI

We know that

1 As n→∞, p(µX) is “similar” to the PSA distribution of INB(θ)

2 EX
[
µX
]

= EX
[
Eθ|X [INB(θ)]

]
= Eθ [INB(θ)]

3 VarX
[
µX
]

= Varθ [INB(θ)]︸ ︷︷ ︸
PSA variance for INB(θ)

− EX
[
Varθ|X [INB(θ)]

]︸ ︷︷ ︸
Posterior variance for INB(θ)

Idea: can approximate the unknown distribution p(µX) by rescaling the PSA distribution
for INB(θ), moment-matching it to the mean and variance defined above

• All we need is to estimate the expected posterior variance...

• Can do this efficiently by only using Q ≈ 30 to 50 << S PSA simulations!

Heath et al. 2017. Medical Decision Making. 38(2): 163-173
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Moment matching Estimating the Expected Posterior Variance

1 Select q = 1, . . . , Q values out of
the S PSA simulations for θ

2 Simulate data Xq from p(X |θ)

3 Run the model to estimate
p(θ | X) and simulate values for
INB(θ |Xq)

4 Estimate the sample variance
σ2
q = Varθ|Xq [INB(θ)]

5 Use the Q estimates for σ2
q

to estimate the expected pos-
terior variance

VarX

[
Eθ|X [INB(θ)]

]
︸ ︷︷ ︸

σ2X

= Varθ [INB(θ)]︸ ︷︷ ︸
σ2

− EX

[
Varθ|X [INB(θ)]

]
︸ ︷︷ ︸

1
Q

∑Q
q=1 σ

2
q
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Moment matching Rescaling and computing the EVSI

• Can now rescale the original PSA samples for INB(θ) to ensure that mean and
variance now match the computed values

ηX = f(µX) = INB
(
θ(s)

)√σ2
X

σ2
+ µ

(
1−

√
σ2
X

σ2

)

– INB
(
θ(s)

)
= s−th PSA simulation for the INB

– µ = Eθ [INB(θ)] = PSA average INB
– σ2 = PSA variance of the INB

and finally estimate the EVSI as

EVSI =
1

S

S∑
s=1

max
{

0, ηX
}
−max {0, µ}

• Can also compute conditional version for φ ∈ θ. “Simply” substitute
– σ2 with σ2

φ = PSA variance for conditional INB (obtained using analysis of EVPPI)

– INB
(
θ(s)

)
with INB

(
φ(s)

)
= Eψ|φ

[
INB

(
θ(s)

)]
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Moment matching

A Small Technicality...

• Only the focal parameters φ will be informed by the future study

• The distribution of µX is similar to that induced by the EVPPI analysis!
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Multiple Focal Parameters A slight complication...

θ1 θ2 θ3 . . . INB(θ) ψ1 φ1 φ2 . . . ψL φ3 φ1 φ2 φ3 → Xq

p(X | φ)
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Research priority: EVSI across different sample sizes

To estimate EVSI across different sample sizes we could simulate Q×N samples from
hypothetical posteriors
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... But we’d lose all the computational efficiency of the moment matching approach...
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Moment matching across different sample sizes

• Consider a set of sample sizes N = (N1, . . . , NQ)

• For each q = 1, . . . , Q
1 Randomly select θq out of the S PSA samples
2 Set N = Nq
3 Simulate one sample Xq from p(X | θq , Nq)
4 Estimate the posterior distribution p(θ |Xq , Nq) and INB(θ |Xq , Nq)
5 Estimate the variance σ2

q associated with a given design (size Nq) and data (Xq)

• NB: Now we need to estimate σ2
X as a function of the sample size: σ2

X(N) = f(N)

σ2
X(Nq) = σ2 − σ2

q = f(Nq) + εq

• Use Bayesian non-linear regression and model

f(Nq) = σ2
φ

Nq
Nq + h

εq ∼ Normal(0, σ2
ε)

– σ2
φ = Varφ [INB(φ)]

– h = Regression parameter
– εq = error term
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Moment matching across different sample sizes

φ1 φ2 φ3 Nq Xq→
p(X | φq, Nq)
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Moment matching across different sample sizes Prior knowledge

• σ2
X(N) increases as N does + f(N) is a monotonically increasing function

• If N →∞, then EVSI → EVPPI and so σ2
X(∞)→ σ2

φ, because µX → INB(φ)

• Can use weakly informative priors for the parameters
– h ∼ Normal

(
NQ/2, 200NQ

)
I(0, )

– σ2
ε ∼ t(m, s, 3)I(0, ), with m, s defined as function of σ2

q for generality
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Research priority: Expected Value of Sample Information
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https://github.com/giabaio/EVSI
https://egon.stats.ucl.ac.uk/projects/EVSI
Heath et al (2018). https://arxiv.org/abs/1804.09590
Heath et al Medical Decision Making. 2017. 38(2): 163-173
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Research priority: Expected Value of Sample Information
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Conclusions

• VoI can be very valuable in driving the whole economic evaluation process
– Summarising PSA (in addition to standard tools, eg CEAC)
– Research priority (in place of standard tools, eg sample size calculations?)

• Historically limited use — also for computational complexity
– Computation still a crucial component — but this is the price to pay for increasingly

realistic and complex models?
– Things can only get better(?) — recent research has improved this massively!

• Need standardised softward to enable practitioners to use the new tools
– And to move from Excel-based modelling to using fully proper statistical software

(eg R)
– Packages and web-applications exist to do this: SAVI, BCEA, BCEAweb, ...
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Thank you!
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Principal Fitted Components

• Objective: find a sufficient dimensionality reduction
– Estimate the function R(φ) : P → d so that NBt ⊥⊥ φ | R(φ)
– “Project” the P−dimensional information contained in φ to the d−dimensional

function R(·)
– Ideally, d << P — in fact, would like d ≤ 2

• “Inverse regression” model
φ = µ+ Υf(NBt) + ε

with
– µ = intercept
– Υ = P × d dimensionality reduction matrix
– f(NBt) = vector-valued function of the “response”
– ε = error term

• Main advantages
– Computational cost is negligible
– Can use model-fitting statistics (eg AIC) to determine the “best” model for given

choices of d (= 2, 3, . . .)
– NB: if the AIC suggests d > 2 then EVPPI estimates likely to be biased!
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Summarising PSA + Research priority: Expected Value of Partial Perfect Information
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Summarising PSA + Research priority: Expected Value of Partial Perfect Information

Expected Value of Perfect Partial Information

Willingness to pay

EVPI
EVPPI for selected parameters (INLA/SPDE)
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