

Sample Size calculations for Stepped Wedge Trials

Gianluca Baio

University College London Department of Statistical Science

gianluca@stats.ucl.ac.uk

(Joint work with Rumana Omar, Andrew Copas, Emma Beard, James Hargreaves and Gareth Ambler)

Stepped Wedge Trials Symposium London School of Hygiene & Tropical Medicine London, 22 September 2015 Work supported by a NIHR Research Methods Opportunity Funding Scheme Grant (RMOFS-2013-03-02)

- Critically investigate the conditions under which applying a stepped wedge design can result in potential gains in terms of
 - Efficiency
 - Statistical power
 - Financial/ethical implications
- Produce a toolbox to perform power calculations
 - Simulation-based approach
 - Extension to more general models

Work supported by a NIHR Research Methods Opportunity Funding Scheme Grant (RMOFS-2013-03-02)

- Critically investigate the conditions under which applying a stepped wedge design can result in potential gains in terms of
 - Efficiency
 - Statistical power
 - Financial/ethical implications
- Produce a toolbox to perform power calculations
 - Simulation-based approach
 - Extension to more general models
- Have lots of fun working in the "Special Issue Crew"!

Analytical formulæ

Analytical formulæ

- Hussey & Hughes (2007) + "Reprise": Hughes et al (2015)
 - Specifically for cross-sectional data. Defines cluster- and time-specific average outcome as $\mu_{ij} = \mu + \alpha_i + \beta_j + X_{ij}\theta$
 - Can compute

Power =
$$\Phi\left(\frac{\theta}{\sqrt{V(\theta)}} - z_{\alpha/2}\right)$$

where $V(\theta) = f(\boldsymbol{X}, I, J, \sigma_e^2, \sigma_{\alpha}^2)$

- Can use asymptotic normality, eg for binary or count outcomes

Analytical formulæ

- Hussey & Hughes (2007) + "Reprise": Hughes et al (2015)
 - Specifically for cross-sectional data. Defines cluster- and time-specific average outcome as $\mu_{ij} = \mu + \alpha_i + \beta_j + X_{ij}\theta$
 - Can compute

Power =
$$\Phi\left(\frac{\theta}{\sqrt{V(\theta)}} - z_{\alpha/2}\right)$$

where $V(\theta) = f(\boldsymbol{X}, I, J, \sigma_e^2, \sigma_{\alpha}^2)$

- Can use asymptotic normality, eg for binary or count outcomes
- Design Effect (DE) Wortman et al (2013) + Hemming & Taljaard (2015)
 - Compute inflation factor to account for induce correlation and re-scale sample size for a parallel RCT
 - Based on Hussey and Hughes (2007) \Rightarrow cross-sectional data

Analytical formulæ

- Hussey & Hughes (2007) + "Reprise": Hughes et al (2015)
 - Specifically for cross-sectional data. Defines cluster- and time-specific average outcome as $\mu_{ij} = \mu + \alpha_i + \beta_j + X_{ij}\theta$
 - Can compute

Power =
$$\Phi\left(\frac{\theta}{\sqrt{V(\theta)}} - z_{\alpha/2}\right)$$

where $V(\theta) = f(\boldsymbol{X}, I, J, \sigma_e^2, \sigma_{\alpha}^2)$

- Can use asymptotic normality, eg for binary or count outcomes
- Design Effect (DE) Wortman et al (2013) + Hemming & Taljaard (2015)
 - Compute inflation factor to account for induce correlation and re-scale sample size for a parallel RCT
 - Based on Hussey and Hughes (2007) \Rightarrow cross-sectional data
- Some generalisations (Hemming et al 2014)
 - "Multiple layers of clustering" + "incomplete" SWT

Simulation-based calculations Baio et al (2015)

- Can directly model different types of outcomes (eg binary or counts)
 - The linear predictor is just defined using a suitable transformation $g(\cdot)$
- Can extend model to account for specific features of the SWT
 - Repeated measurements (eg closed-cohort) add extra random effect

 $v_{ik} \sim \mathsf{Normal}(0, \sigma_v^2)$

- Specify time trends (eg quadratic or polynomial)
- Include cluster-specific intervention effects

 $X_{ij}(\theta + u_i)$ with $u_i \sim \text{Normal}(0, \sigma_u^2)$

Simulation-based calculations Baio et al (2015)

- Can directly model different types of outcomes (eg binary or counts)
 - The linear predictor is just defined using a suitable transformation $g(\cdot)$
- Can extend model to account for specific features of the SWT
 - Repeated measurements (eg closed-cohort) add extra random effect

 $v_{ik} \sim \mathsf{Normal}(0, \sigma_v^2)$

- Specify time trends (eg quadratic or polynomial)
- Include cluster-specific intervention effects

 $X_{ij}(\theta + u_i)$ with $u_i \sim \text{Normal}(0, \sigma_u^2)$

- Helps alignment of design and analysis model
 - This is one of the issues identified by the literature review
 - More flexibility at design stage to match complexity of data generating process as well as analysis model (mixed effects, GEE, etc)

Simulation-based vs analytical calculations

ICC	Analytical power based on HH	Simulation-based calculations
	K = 20, J = 6	K = 20, J = 6
Continuous outcome ^a		
0	9	9
0.1	13	13
0.2	14	13
0.3	14	14
0.4	14	14
0.5	14	14
Binary outcome ^b		
0	11	15
0.1	17	16
0.2	18	17
0.3	18	18
0.4	18	18
0.5	18	18
Count $outcome^c$		
0	8	8
0.1	13	12
0.2	13	12
0.3	13	12
0.4	13	11
0.5	13	11

^a Intervention effect = -0.3785; $\sigma_e = 1.55$.

^b Baseline outcome probability = 0.26; OR = 0.56.

 c Baseline outcome rate = 1.5; RR = 0.8.

Notation: K = number of subjects per cluster; J = total number of time points, including one baseline.

The cells in the table are the estimated number of clusters as a function of the ICC and outcome type, to obtain 80% power

Cross-sectional vs closed-cohort data

Effect size & ICC — Continuous outcome

Cross-sectional

Closed-cohort

UCI

I = 25 clusters, each with K = 20 subjects; J = 6 time points (\equiv measurements) including one baseline

Cross-sectional vs closed-cohort data

Number of steps — Binary outcome

Cross-sectional

Closed-cohort

I = 24 clusters, each with K = 20 subjects; individual-level ICC= 0.0016 for closed-cohort

Gianluca Baio (UCL) Sample size calculations for SWTs LSHTM Symposium, 22 Sep 2015 7 / 10

R package SWSamp

- Will allow the user to run simulations for a set of "basic" models
 - Cross-sectional + closed-cohort data
 - Continuous (normal), binary and count outcome
- Provide template for custom data-generating models
- Include Bayesian alternative (based on INLA)
 - Comparable computational time to REML
 - Can use default priors but can also customise
- Explore issues with open-cohorts & time-to-event outcomes

R package SWSamp

- Will allow the user to run simulations for a set of "basic" models
 - Cross-sectional + closed-cohort data
 - Continuous (normal), binary and count outcome
- Provide template for custom data-generating models
- Include Bayesian alternative (based on INLA)
 - Comparable computational time to REML
 - Can use default priors but can also customise
- Explore issues with open-cohorts & time-to-event outcomes
- Can use the name "Samp" ...

(Only a very few!) References

Baio G, Copas A, Ambler G, Hargreaves J, Beard E, Omar R. (2015)

Sample size calculations for a stepped wedge trial. *Trials.* **16**:354. doi: 10.1186/s13063-015-0840-9

Hemming K, Lilford R, Girling A. (2014)

Stepped-wedge cluster randomised controlled trials: a generic framework including parallel and multiple-level design. Statistics in Medicine. 34(2):181—196. doi: 10.1002/sim.6325

Hemming K, Taljaard M. (2015)

Relative efficiencies of stepped wedge and cluster randomized trials were easily compared using a unified approach. *Journal of Clinical Epidemiology*. doi: 10.1016/j.jclinepi.2015.08.015.

Hussey M and Hughes J. (2007).

Design and analysis of stepped wedge cluster randomized trials. *Contemporary Clinical Trials*. **28**:182–191

Hughes J, Granston T and Heagerty, P. (2015).

Current issues in the design and analysis of stepped wedge trials. *Contemporary Clinical Trials*. doi: 10.1016/j.cct.2015.07.006

Woertman W, de Hoopa E, Moerbeek M, Zuidemac S, Gerritsen D and Teerenstra S. (2013). Stepped wedge designs could reduce the required sample size in cluster randomized trials. *Journal of Clinical Epidemiology*. **66**:752–758

Thank you!