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Laplace’s Liberation Army? Know what you’re looking for. . .
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Bayesian computation

• In a (very small!) nutshell, Bayesian inference boils down to the computation of
posterior and/or predictive distributions

p(θ | y) = p(y | θ)p(θ)∫
p(y | θ)p(θ)dθ

p(y∗ | y) =
∫
p(y∗ | θ)p(θ | y)dθ

• Since the advent of simulation-based techniques (notably MCMC), Bayesian
computation has enjoyed incredible development

• This has certainly been helped by dedicated software (eg BUGS and then WinBUGS,
OpenBUGS, JAGS)

• MCMC methods are very general and can effectively be applied to “any” model

• However:
– Even if in theory, MCMC can provide (nearly) exact inference, given perfect

convergence and MC error → 0, in practice, this has to be balanced with model
complexity and running time

– This is particularly an issue for problems characterised by large data or very complex
structure (eg hierarchical models)
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MCMC Pros & cons

• “Standard” MCMC sampler are generally easy-ish to program and are in fact
implemented in readily available software

• However, depending on the complexity of the problem, their efficiency might be
limited

• Possible solutions
1 More complex model specification

• Blocking
• Overparameterisation

2 More complex sampling schemes
• Hamiltonian Monte Carlo
• No U-turn sampling (eg stan) — more on this later!

3 Alternative methods of inference
• Approximate Bayesian Computation (ABC)
• INLA
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Basics of INLA

The basic ideas revolve around

• Formulating the model using a specific characterisation
– All models that can be formulated in this way have certain features in common, which

facilitate the computational aspects
– The characterisation is still quite general and covers a wide range of possible models

(more on that later!)
– NB: This implies less flexibility with respect to MCMC — but in many cases this is not

a huge limitation!

• Use some basic probability conditions to approximate the relevant distributions

• Compute the relevant quantities typically using numerical methods

For a longer, more structured (but older) version of this talk see:
http://www.statistica.it/gianluca/Talks/INLA.pdf
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Latent Gaussian models (LGMs)

• The general problem of (parametric) inference is posited by assuming a probability
model for the observed data, as a function of some relevant parameters

y | θ,ψ ∼ p(y | θ,ψ) =
n∏
i=1

p(yi | θ,ψ)

• Often (in fact for a surprisingly large range of models!), we can assume that the
parameters are described by a Gaussian Markov Random Field (GMRF)

θ | ψ ∼ Normal(0,Σ(ψ))

θl ⊥⊥ θm | θ−lm ⇔ Qlm = Σ−1
lm = 0

where
– The notation “−lm” indicates all the other elements of the parameters vector,

excluding elements l and m
– NB: Conditional independence implies that the precision matrix Q is sparse (simplify

calculations!)
– The covariance matrix Σ depends on some hyper-parameters ψ

• This kind of models is often referred to as Latent Gaussian models
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LGMs as a general framework

• In general, we can partition ψ = (ψ1,ψ2) and re-express a LGM as

ψ ∼ p(ψ) (“hyperprior”)

θ | ψ ∼ p(θ | ψ) = Normal(0,Σ(ψ1)) (“GMRF prior”)

y | θ,ψ ∼
∏
i

p(yi | θ,ψ2) (“data model”)

i.e. ψ1 are the hyper-parameters and ψ2 are nuisance parameters

• The dimension of θ can be very large (e.g. 102-105)

• Conversely, because of the conditional independence properties, the dimension of ψ
needs to be generally small (e.g. 1-5)
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LGMs as a general framework

• A very general way of specifying the problem is by modelling the mean for the i-th
unit by means of an additive linear predictor, defined on a suitable scale (e.g. logistic
for binomial data)

ηi = β0 +

M∑
m=1

βmxmi +
L∑
l=1

fl(zli)

where
– β0 is the intercept;
– (β1, . . . , βM ) quantify the effect of x = (x1, . . . , xM ) on the response;
– f = {f1(·), . . . , fL(·)} is a set of functions defined in terms of some covariates
z = (z1, . . . , zL)

and then assume
θ = (β,f) ∼ GMRF(ψ)

• NB: This of course implies some form of Normally-distributed marginals for β and f
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LGMs as a general framework Examples

Upon varying the form of the functions fl(·), this formulation can accommodate a wide
range of models

• Standard regression
– fl(·) = NULL

• Hierarchical models
– fl(·) ∼ Normal(0, σ2

f ) (Exchangeable)

σ2
f | ψ ∼ some common distribution

• Spatial and spatio-temporal models
– Two components: f1(·) ∼ CAR (Spatially structured effects)

Two components: f2(·) ∼ Normal(0, σ2
f2

) (Unstructured residual)

• Spline smoothing
– fl(·) ∼ AR(φ, σ2

ε)

• Survival models / logGaussian Cox Processes
– More complex specification in theory, but relatively easy to fit within the INLA

framework!

• . . .
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Integrated Nested Laplace Approximation (INLA)

• In a Bayesian LGM, the required distributions are

p(θj | y) =

∫
p(θj ,ψ | y)dψ =

∫
p(ψ | y)p(θj | ψ,y)dψ

p(ψk | y) =

∫
p(ψ | y)dψ−k

• Estimate

p(ψ | y) =
p(θ,ψ | y)
p(θ | ψ,y)

≈
p(ψ)p(θ | ψ)p(y | θ)

p̃(θ | ψ,y)

∣∣∣∣
θ=θ̂(ψ)

p(θj | ψ,y) =
p ({θj ,θ−j} | ψ,y)
p(θ−j | θj ,ψ,y)

≈
p(ψ)p(θ | ψ)p(y | θ)
p̃(θ−j | θj ,ψ,y)

∣∣∣∣
θ−j=θ̂−j(θj ,ψ)

where p̃ indicates the Laplace approximation and θ̂ is the mode
– Can do various forms of LA: “Simplified” (based on Taylor’s expansion up to 3rd order)

vs “Full” (more precise but more computationally expensive)

• Use numerical integration to obtain the marginals
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INLA in practice http://www.statistica.it/gianluca/Talks/INLA.pdf

1 Select a grid of points for ψ∗h and associated area
weights ∆h & interpolate to approximate the posterior

Posterior marginal for ψ : p(ψ | y) ∝ p(θ,y|ψ)p(ψ)
p(θ|y,ψ)
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1 Select a grid of points for ψ∗h and associated area
weights ∆h & interpolate to approximate the posterior

2 Weight the (conditional) marginal posteriors by the
density associated with each ψ on the grid

Posterior marginal for ψ : p(ψ | y) ∝ p(θ,y|ψ)p(ψ)
p(θ|y,ψ)
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INLA in practice http://www.statistica.it/gianluca/Talks/INLA.pdf

1 Select a grid of points for ψ∗h and associated area
weights ∆h & interpolate to approximate the posterior

2 Weight the (conditional) marginal posteriors by the
density associated with each ψ on the grid

Posterior marginal for ψ : p(ψ | y) ∝ p(θ,y|ψ)p(ψ)
p(θ|y,ψ)
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3 Weight the (conditional) marginal posteriors by the
density associated with each ψ on the grid

Posterior marginal for θ, conditional on each {ψ∗h} (weighted)
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3 Weight the (conditional) marginal posteriors by the
density associated with each ψ on the grid

4 (Numerically) sum over the conditional densities to get
the marginal posterior for θ

Posterior marginal for θ, conditional on each {ψ∗h} (weighted)
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Step by step guide to using R-INLA

1. The first thing to do is to specify the model

• For example, assume we have a generic model

yi
iid∼ p(yi | θi)

ηi = g(θi) = β0 + β1x1i + β2x2i + f(zi)

where
– x = (x1, x2) are observed covariates for which we are assuming a linear effect on some

function g(·) of the parameter θi
– β = (β0, β1, β2) ∼ Normal(0, τ−1

1 ) are unstructured (“fixed”) effects
– z is an index. This can be used to include structured (“random”), spatial,

spatio-temporal effect, etc.
– f ∼ Normal(0,Q−1

f (τ2)) is a suitable function used to model the structured effects

• As mentioned earlier, this formulation can actually be used to represent quite a wide
class of models!
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Step by step guide to using R-INLA

• The model is translated in R code using a formula

• This is sort of standard in R (you would do pretty much the same for calls to
functions such as lm, or glm, or lmer)

# Install the R-INLA package (see http://www.r-inla.org/)
INLA.repo="https://inla.r-inla-download.org/R/stable"
install.packages("INLA",dep=TRUE,repos=c(getOption("repos"),INLA=INLA.repo))

# Define a model "formula" (as you would in (g)lm)
formula = y ˜ x1 + x2 + f(z, model=...)

• The f() function can account for several structured effects

• This is done by specifying a different model
– iid, iid1d, iid2d, iid3d specify random effects
– rw1, rw2, ar1 are smooth effect of covariates or time effects
– seasonal specifies a seasonal effect
– besag models spatially structured effects (CAR)
– generic is a user-defined precision matrix
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Step by step guide to using R-INLA

2. Call the function inla, specifying the data and options (more on this later), e.g.

# Calls INLA to fit the model
m = inla(formula, data=data.frame(y,x1,x2,z),...)

• The data need to be included in a suitable data.frame

• R returns an object m in the class inla, which has some methods available
– summary()
– plot()

• The options let you specify the priors and hyperpriors, together with additional
output
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Example Low birth weight data

• Logistic regression — data available in the brinla package
(https://github.com/julianfaraway/brinla)

library(INLA)
# Load the data
data(lowbwt, package = "brinla")
head(lowbwt)

LOW AGE LWT RACE SMOKE HT UI FTV
1 1 28 120 3 1 0 1 0
2 1 29 130 1 0 0 1 2
3 1 34 187 2 1 1 0 0
4 1 25 105 3 0 1 0 0
5 1 25 85 3 0 0 1 0
6 1 27 150 3 0 0 0 0

# Specify the model
formula = LOW ˜ AGE + LWT + RACE + SMOKE + HT + UI + FTV

# Run INLA
m = inla(formula, data=lowbwt, family = "binomial", Ntrials = 1,

control.compute = list(dic = TRUE, cpo = TRUE))
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Example Low birth weight data

summary(m)

Time used:
Pre-processing Running inla Post-processing Total

0.21849060 0.07591939 0.03839827 0.33280826

Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant mode kld

(Intercept) 0.56670 1.185563 -1.72706 0.55532 2.924583 0.53281 1.187e-07
AGE -0.02068 0.035961 -0.09215 -0.02039 0.049074 -0.01980 2.311e-07
LWT -0.01760 0.006853 -0.03167 -0.01739 -0.004754 -0.01696 1.425e-06
RACE2 1.34018 0.527674 0.31539 1.33639 2.385517 1.32888 3.483e-07
RACE3 0.94550 0.436262 0.10374 0.94057 1.815536 0.93082 3.124e-08
SMOKE1 1.07495 0.395395 0.31524 1.06945 1.866740 1.05857 4.189e-09
HT1 1.97339 0.694087 0.66337 1.95455 3.391165 1.91703 9.834e-07
UI1 0.93286 0.448558 0.05220 0.93284 1.812824 0.93284 9.883e-08
FTV 0.05591 0.171968 -0.28921 0.05852 0.386280 0.06369 3.120e-08

The model has no random effects
The model has no hyperparameters

Expected number of effective parameters(std dev): 8.999(0.00)
Number of equivalent replicates : 21.00

Deviance Information Criterion (DIC) ...............: 221.20
Deviance Information Criterion (DIC, saturated) ....: 221.20
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Example Low birth weight data

• By default, INLA uses “minimally informative” priors for the model parameters. But
can modify in various ways

– “Penalised Complexity” Prior — invariant to reparameterisations & linked to
“objective”, Jeffreys’ priors

– Standard distributions with fixed parameters

# Specify different values for (some of) the prior distributions
priors = list(mean.intercept=0, prec.intercept=10ˆ(-2),

mean=list(AGE=log(.5), SMOKE1=log(2), default=0), prec=.5ˆ(-2))

# Re-run the model
m2 = inla(formula, data=lowbwt, family = "binomial", Ntrials = 1,

control.compute = list(dic = TRUE, cpo = TRUE),control.fixed=priors)

# Shows the results
print(m2$summary.fixed,digits=4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) 0.942691 1.07101 -1.11482 0.927722 3.087720 0.898064 5.262e-09
AGE -0.032257 0.03383 -0.09999 -0.031804 0.032901 -0.030904 4.904e-10
LWT -0.012983 0.00628 -0.02586 -0.012790 -0.001199 -0.012406 1.352e-06
RACE2 0.538491 0.35252 -0.15720 0.539704 1.226768 0.542148 8.830e-07
RACE3 0.436564 0.30300 -0.15892 0.436762 1.030369 0.437185 8.350e-07
SMOKE1 0.793426 0.28788 0.23013 0.792763 1.359874 0.791464 1.013e-06
HT1 0.661096 0.39972 -0.12790 0.662528 1.441378 0.665414 8.627e-07
UI1 0.456288 0.33115 -0.19716 0.457404 1.102905 0.459653 8.929e-07
FTV -0.004357 0.15674 -0.31955 -0.001754 0.296136 0.003412 8.787e-08
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Example Low birth weight data

Regression Estimates
−1 0 1 2 3

(Intercept)

AGE

LWT

RACE2

RACE3

SMOKE1

HT1

UI1

FTV

–•– Default prior
–•– Modified prior
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Example Longitudinal data — health effects of air pollution

# Load the data
data(ohio, package = "brinla")
# Specify the model including random effects by individual
formula = resp ˜ age + smoke + f(id, model="iid")
# Run INLA
m = inla(formula, family="binomial", data=ohio, control.compute=list(config=TRUE))
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Simulating from the posterior distributions

• Arguably, one of the main advantages of MCMC is that, given convergence, the
output is given by samples from the joint posterior distribution of all parameters,
p(θ | y)

– Can obtain all marginal distributions p(θj | y) by simply selecting the relevant
simulations

– Can obtain simulations from the posterior distribution of any function g(θj) by simply
applying the function to the simulations for θj

• INLA is a bit more complicated
– Can use Monte Carlo to obtain simulations from the posterior distributions
– However, because of how it works, the estimates are for the marginal posterior

distributions for each model parameter
– Can use specialised functions based on copulæ to approximate the underlying joint

posterior and then MC-simulate

# Create an object with the simulations from the joint posterior
jpost = inla.posterior.sample(n=1000,m)

# Selects the positions in the resulting list where the values of the "fixed effects" are stored
pos = pmatch(rownames(m$summary.fixed),rownames(jpost[[1]]$latent))

# Select only the relevant simulated values and put them in a matrix with
# number of rows = nsim and number of columns=length(pos)
sim <- matrix(unlist(lapply(jpost,function(x) x$latent[pos,])),ncol=length(pos),byrow=T)
colnames(sim) <- m$names.fixed
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Simulating from the posterior distributions

# Matrix with simulations from the joint posterior distribution
head(sim)

(Intercept) age smoke
[1,] -2.927550 -0.2021857 0.2968993
[2,] -3.196615 -0.1806465 0.7236093
[3,] -3.006732 -0.1474960 0.4901844
[4,] -2.926754 -0.2207513 0.2648405
[5,] -2.909527 -0.1479024 0.4605895
[6,] -2.796352 -0.1622534 0.2770397

# Posterior probability that the "age effect" exceeds 0 (on logOR scale)
sum(sim[,"age"]>0)/nrow(sim)

[1] 0.004

# Posterior probability that the "smoke effect" exceeds 1 (on OR scale)
sum(exp(sim[,"smoke"])>1)/nrow(sim)

[1] 0.944
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Simulating from the posterior distributions

# Histogram for the marginal posterior distribution of Age (logOR scale)
hist(sim[,"age"],xlab="Age (log OR)",main="Posterior distribution for log OR for Age")
abline(v=0,lwd=3)
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Simulating from the posterior distributions

# Scatterplot for the joint posterior distribution of Age & Smoke (OR scale)
plot(exp(sim[,"age"]),exp(sim[,"smoke"]),pch=20,cex=.7,xlab="Age",

ylab="Smoke",main="Joint posterior",axes=F)
axis(1); axis(2)
abline(v=1,lwd=2); abline(h=1,lwd=2)
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Using INLA in practice. . . In health economic evaluation
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• Fictional decision tree model with correlated parameters

• 2 treatment options and overall 19 parameters

• Parameters simulated from multivariate Normal distribution, so can compute exact EVPPI

Heath et al Statistics in Medicine. 2016; 35(23): 4264-4280
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• Cost-effectiveness model for influenza vaccine based on evidence synthesis

• 2 treatment options and overall 63 parameters

• Model not available in closed form (needs MCMC simulations)

Heath et al Statistics in Medicine. 2016; 35(23): 4264-4280
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Using INLA in practice. . . Predicting football results

92 Machine Learning (2019) 108:77–95

Table 5 Ranked probability score and classification accuracy for the models in Table 4, as estimated from the
validation framework of Section 5 (standard errors are in parentheses) and from the matches in the test set of
the challenge

Model Ranked probability score Accuracy Test

Draws Validation Test Validation

BL Davidson 0.2242 (0.0024) 0.2261 0.4472 (0.0067) 0.4515

BL Ordinal 0.2242 (0.0024) 0.2261 0.4472 (0.0067) 0.4515

CS Davidson 0.2112 (0.0028) 0.2128 0.4829 (0.0073) 0.5194

CS Ordinal 0.2114 (0.0028) 0.2129 0.4779 (0.0074) 0.4951

LF Davidson 0.2088 (0.0026) 0.2080 0.4849 (0.0068) 0.5049

LF Ordinal 0.2088 (0.0026) 0.2084 0.4847 (0.0068) 0.5146

TVC Davidson 0.2081 (0.0026) 0.2080 0.4898 (0.0068) 0.5049

TVC Ordinal 0.2083 (0.0025) 0.2080 0.4860 (0.0068) 0.5097

AFD Ordinal 0.2079 (0.0026) 0.2061 0.4837 (0.0068) 0.5194

�HPL 0.2073 (0.0025) 0.2047 0.4832 (0.0067) 0.5485

†TVC Ordinal 0.2085 (0.0025) 0.2087 0.4865 (0.0068) 0.5388

The model indicated by † is the one we used to compute the probabilities for the submission to the MLS
challenge, while the one indicated by ∗ is the one that achieves the lowest estimated ranked probability score
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Thank you!
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