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Bayesian computation

e In a (very small!) nutshell, Bayesian inference boils down to the computation of
posterior and/or predictive distributions

)= p(y | 8)p(6)

p@]y) = [ p(y | 6)p(6)de

Py |y) = /p(y* | €)p(6 | y)do
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Bayesian computation Markov Chain Monte Carlo (MCMC)

e In a (very small!) nutshell, Bayesian inference boils down to the computation of
posterior and/or predictive distributions

p(y | 0)p(0) . / .
p0|y)=————""—-  ply |y)= [ py [0)pO|y)dd
©1v)= [ amoa "W 19 = [T 1000 1Y)

e Since the advent of simulation-based techniques (notably MCMC), Bayesian
computation has enjoyed incredible development

e This has certainly been helped by dedicated software (eg BUGS and then WinBUGS,
OpenBUGS, JAGS)

o MCMC methods are very general and can effectively be applied to “any” model
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Bayesian computation Markov Chain Monte Carlo (MCMC)

e In a (very small!) nutshell, Bayesian inference boils down to the computation of
posterior and/or predictive distributions

p(0|y) = _ply[6)p(6) Py |y) = /p(y* | 0)p(0 | y)do

~ [p(y|0)p(6)d6

e Since the advent of simulation-based techniques (notably MCMC), Bayesian
computation has enjoyed incredible development

e This has certainly been helped by dedicated software (eg BUGS and then WinBUGS,
OpenBUGS, JAGS)

o MCMC methods are very general and can effectively be applied to “any” model

e However:

— Even if in theory, MCMC can provide (nearly) exact inference, given perfect
convergence and MC error — 0, in practice, this has to be balanced with model
complexity and running time

— This is particularly an issue for problems characterised by large data or very complex
structure (eg hierarchical models)

Gianluca Baio (UCL) Introduction to INLA NASH Seminar, 3 Apr 2019



\Y[¢\Y[@ Pros & cons

e “Standard” MCMC sampler are generally easy-ish to program and are in fact
implemented in readily available software

e However, depending on the complexity of the problem, their efficiency might be
limited
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\Y[¢\Y[@ Pros & cons

e “Standard” MCMC sampler are generally easy-ish to program and are in fact
implemented in readily available software

e However, depending on the complexity of the problem, their efficiency might be
limited

e Possible solutions
@ More complex model specification

e Blocking
e Overparameterisation
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\Y[¢\Y[@ Pros & cons

e “Standard” MCMC sampler are generally easy-ish to program and are in fact
implemented in readily available software

e However, depending on the complexity of the problem, their efficiency might be
limited

e Possible solutions
@ More complex model specification

e Blocking
e Overparameterisation

@ More complex sampling schemes

e Hamiltonian Monte Carlo
e No U-turn sampling (eg stan) — more on this later!
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implemented in readily available software

e However, depending on the complexity of the problem, their efficiency might be
limited

e Possible solutions
@ More complex model specification

e Blocking
e Overparameterisation

@ More complex sampling schemes

e Hamiltonian Monte Carlo
e No U-turn sampling (eg stan) — more on this later!

@ Alternative methods of inference

e Approximate Bayesian Computation (ABC)
e INLA
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\Y[¢\Y[@ Pros & cons

e “Standard” MCMC sampler are generally easy-ish to program and are in fact
implemented in readily available software

e However, depending on the complexity of the problem, their efficiency might be
limited

e Possible solutions
@ More complex model specification

e Blocking
e Overparameterisation

@ More complex sampling schemes

e Hamiltonian Monte Carlo
e No U-turn sampling (eg stan) — more on this later!

@ Alternative methods of inference

e Approximate Bayesian Computation (ABC)
e INLA — more on this now!
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Basics of INLA

The basic ideas revolve around
e Formulating the model using a specific characterisation

— All models that can be formulated in this way have certain features in common, which
facilitate the computational aspects

— The characterisation is still quite general and covers a wide range of possible models
(more on that later!)

— NB: This implies less flexibility with respect to MCMC — but in many cases this is not
a huge limitation!
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The basic ideas revolve around
e Formulating the model using a specific characterisation

— All models that can be formulated in this way have certain features in common, which
facilitate the computational aspects

— The characterisation is still quite general and covers a wide range of possible models
(more on that later!)

— NB: This implies less flexibility with respect to MCMC — but in many cases this is not
a huge limitation!

e Use some basic probability conditions to approximate the relevant distributions
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— All models that can be formulated in this way have certain features in common, which
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— The characterisation is still quite general and covers a wide range of possible models
(more on that later!)
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e Compute the relevant quantities typically using numerical methods
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Basics of INLA

The basic ideas revolve around
e Formulating the model using a specific characterisation

— All models that can be formulated in this way have certain features in common, which
facilitate the computational aspects

— The characterisation is still quite general and covers a wide range of possible models
(more on that later!)

— NB: This implies less flexibility with respect to MCMC — but in many cases this is not
a huge limitation!

e Use some basic probability conditions to approximate the relevant distributions

e Compute the relevant quantities typically using numerical methods

For a longer, more structured (but older) version of this talk see:
http://www.statistica.it/gianluca/Talks/INLA.pdf
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Latent Gaussian models (LGMs)

e The general problem of (parametric) inference is posited by assuming a probability
model for the observed data, as a function of some relevant parameters

y 16,9 ~ply|0,%)=]]py0,%)
=1
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Latent Gaussian models (LGMs)

e The general problem of (parametric) inference is posited by assuming a probability
model for the observed data, as a function of some relevant parameters

y 16,9 ~ply|0,%)=]]py0,%)
=1

e Often (in fact for a surprisingly large range of models!), we can assume that the
parameters are described by a Gaussian Markov Random Field (GMRF)

6 | ¢ ~ Normal(0, 3(2)))

al uiR em ‘ G—Im A le, - El;ri =0
where

— The notation “—Im” indicates all the other elements of the parameters vector,
excluding elements [ and m

— NB: Conditional independence implies that the precision matrix Q is sparse (simplify
calculations!)

— The covariance matrix 3 depends on some hyper-parameters 1
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Latent Gaussian models (LGMs)

e The general problem of (parametric) inference is posited by assuming a probability
model for the observed data, as a function of some relevant parameters

y 16,9 ~ply|0,%)=]]py0,%)
=1

e Often (in fact for a surprisingly large range of models!), we can assume that the
parameters are described by a Gaussian Markov Random Field (GMRF)

6 | ¢ ~ Normal(0, 3(2)))

-1
al uiR em ‘ G—Im A le, - Elm =0
where
— The notation “—Im” indicates all the other elements of the parameters vector,
excluding elements [ and m
— NB: Conditional independence implies that the precision matrix Q is sparse (simplify
calculations!)
— The covariance matrix 3 depends on some hyper-parameters 1

e This kind of models is often referred to as Latent Gaussian models
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LGMs as a general framework

e In general, we can partition 1) = (21, 2) and re-express a LGM as

P~ p(Y) (“hyperprior")
0|~ p(@ | 1) = Normal(0,=(1p1)) (“GMRF prior”)
y| 0,9~ Hp(yi | 6,2) (“data model”)

i.e. 11 are the hyper-parameters and )2 are nuisance parameters
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LGMs as a general framework

e In general, we can partition 1) = (21, 2) and re-express a LGM as

P~ p(Y) (“hyperprior")
0|~ p(@ | 1) = Normal(0,=(1p1)) (“GMRF prior”)
y| 0,9~ Hp(yi | 6,2) (“data model”)

i.e. 11 are the hyper-parameters and )2 are nuisance parameters

e The dimension of O can be very large (e.g. 10-10°)

e Conversely, because of the conditional independence properties, the dimension of v
needs to be generally small (e.g. 1-5)
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LGMs as a general framework

e A very general way of specifying the problem is by modelling the mean for the i-th
unit by means of an additive linear predictor, defined on a suitable scale (e.g. logistic
for binomial data)

M L
i = BO + Z Bmx'mi + Z fl(zli)

where m=1 =1
— Bo is the intercept;
- (B1,.-.,Bn) quantify the effect of @ = (z1,...,25s) on the response;
- £ ={fi("),..., f(-)} is a set of functions defined in terms of some covariates
2= G ozr)

and then assume

6 = (B, f) ~ GMRF(¢)
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LGMs as a general framework

e A very general way of specifying the problem is by modelling the mean for the i-th
unit by means of an additive linear predictor, defined on a suitable scale (e.g. logistic
for binomial data)

M L
i = BO + Z Bmx'mi + Z fl(zli)

where m=1 =1
— Bo is the intercept;
- (B1,.-.,Bn) quantify the effect of @ = (z1,...,25s) on the response;
- £ ={fi("),..., f(-)} is a set of functions defined in terms of some covariates
2= G ozr)

and then assume

6 = (B, f) ~ GMRF(¢)

e NB: This of course implies some form of Normally-distributed marginals for 3 and f
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LGMs as a general framework Examples

Upon varying the form of the functions fi(-), this formulation can accommodate a wide
range of models
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LGMs as a general framework Examples

Upon varying the form of the functions fi(-), this formulation can accommodate a wide
range of models

e Standard regression
- fi(-) = NULL
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LGMs as a general framework Examples

Upon varying the form of the functions fi(-), this formulation can accommodate a wide
range of models

e Standard regression
- fi(-) = NULL

e Hierarchical models
= fi() ~ Normal((],a;%) (Exchangeable)

cr? | 9 ~ some common distribution
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LGMs as a general framework Examples

Upon varying the form of the functions fi(-), this formulation can accommodate a wide
range of models

e Standard regression
- fi(-) = NULL

e Hierarchical models
= fi() ~ Normal((],a;%) (Exchangeable)

cr? | 9 ~ some common distribution

e Spatial and spatio-temporal models

— Two components: fi(:) ~ CAR (Spatially structured effects)
fa () ~ NormaI(O,a?Q) (Unstructured residual)
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LGMs as a general framework Examples

Upon varying the form of the functions fi(-), this formulation can accommodate a wide
range of models

e Standard regression
- fi(-) = NULL

e Hierarchical models
= fi() ~ Normal((],a;%) (Exchangeable)

cr? | 9 ~ some common distribution

e Spatial and spatio-temporal models

— Two components: fi(:) ~ CAR (Spatially structured effects)
fa () ~ NormaI(O,a?Q) (Unstructured residual)

e Spline smoothing

= fi() ~ AR(¢, 2)
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LGMs as a general framework Examples

Upon varying the form of the functions fi(-), this formulation can accommodate a wide
range of models

e Standard regression
- fi(-) = NULL

Hierarchical models
= fi() ~ Normal((),a;%) (Exchangeable)

cr? | 9 ~ some common distribution

e Spatial and spatio-temporal models

— Two components: fi(:) ~ CAR (Spatially structured effects)

fa () ~ NOYma'(O,J?Q) (Unstructured residual)

e Spline smoothing

= fi() ~ AR(¢, 2)

Survival models / logGaussian Cox Processes

— More complex specification in theory, but relatively easy to fit within the INLA
framework!
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LGMs as a general framework Examples

Upon varying the form of the functions fi(-), this formulation can accommodate a wide
range of models

e Standard regression
- fi(-) = NULL

Hierarchical models
= fi() ~ Normal((),a;%) (Exchangeable)

cr? | 9 ~ some common distribution

e Spatial and spatio-temporal models

— Two components: fi(:) ~ CAR (Spatially structured effects)

fa () ~ NOYma'(O,J?Q) (Unstructured residual)

e Spline smoothing

= fi() ~ AR(¢, 2)

e Survival models / logGaussian Cox Processes
— More complex specification in theory, but relatively easy to fit within the INLA
framework!
[ ]
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Integrated Nested Laplace Approximation (INLA)

e In a Bayesian LGM, the required distributions are

p(60; | ) / p(6;,9 | y)dep = / p(tp | 9)p(6; | b, y)dep

Pk | ) / D | y)dpi
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Integrated Nested Laplace Approximation (INLA)

e In a Bayesian LGM, the required distributions are

p(6; |y) = / p(0;,% | y)dep = / p(ap | )p(6 | . y)dep
pn |y) = / D | y)dpi
e Estimate
P | y) = p(0,¥ |y) _ p()p(0 | ¥)p(y | 0)

T e py) 50| ¥, y) 0=6(w)
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Integrated Nested Laplace Approximation (INLA)

e In a Bayesian LGM, the required distributions are

p(0; | y)

/ p(6;,% | y)dep = / P | 9)p(0; | . y)dep
pn |y) = / D | y)dpi

e Estimate
ot | y) = p(0. % |y)  p(¥)pO | ¥)p(y | 6)
(0| ¥, y) PO | ¥, y) 0=06(x)
_ _p({05,0—5} | b,y) _ p(¥)p(6 | ¥)p(y | 6)
PO =0 o)~ #0105 %,9)

0_;=0_;(05,%)

where p indicates the Laplace approximation and 0 is the mode

— Can do various forms of LA: “Simplified” (based on Taylor’s expansion up to 3™ order)
vs “Full” (more precise but more computationally expensive)
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Integrated Nested Laplace Approximation (INLA)

e In a Bayesian LGM, the required distributions are

p(6; |y) = / p(6;,9 | y)dep = / p(ap | )p(6 | . y)dep
pn |y) = / D | y)dpi
e Estimate
ot | y) = p(0. % |y)  p(¥)pO | ¥)p(y | 6)
20 %.9) 5010y locorw
_ _p({05,0—5} | b,y) _ p(¥)p(6 | ¥)p(y | 6)
PO ) = e o) 5O 0y %.9)

0_;=0_;(05,%)

where p indicates the Laplace approximation and 0 is the mode

— Can do various forms of LA: “Simplified” (based on Taylor’s expansion up to 3™ order)
vs “Full” (more precise but more computationally expensive)

e Use numerical integration to obtain the marginals
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I\ WATY practice http://www.statistica.it/gianluca/Talks/INLA.pdf

o Select a grid of points for d’;; and associated area
weights Ay, & interpolate to approximate the posterior
p(0,y|v)p()
p(0fy,Y

Posterior marginal for ¢ : p(1) | y) o
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I\ WATY practice http://www.statistica.it/gianluca/Talks/INLA.pdf

o Select a grid of points for d’;; and associated area e Weight the (conditional) marginal posteriors by the
weights Ay, & interpolate to approximate the posterior density associated with each ) on the grid

Posterior marginal for 8, conditional on each {’PZ} (unweighted)

Posterior marginal for v : p(v | y) o M

p(0]y
g ]
£ | 57 i
1B R i
L . ///‘W
Bl < "\6‘\@
W
T 1 4+ 5w A o M
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I\ WATY practice http://www.statistica.it/gianluca/Talks/INLA.pdf

o Select a grid of points for d’;; and associated area e Weight the (conditional) marginal posteriors by the
weights Ay, & interpolate to approximate the posterior density associated with each ) on the grid

Posterior marginal for 8, conditional on each {’PZ} (unweighted)

Posterior marginal for v : p(v | y) o M

p(0]y

Vs
BN g9 )
,7(.’?;'
e B i
. . A
.| oz ///\\\ A\
T L L ; ;

14 12 10 -8

Exponential of log density
Density

© Weight the (conditional) marginal posteriors by the
density associated with each 1) on the grid

Posterior marginal for 6, conditional on each {1} } (weighted)

o015
L

Density
010
.
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INLA in practice

http://www.statistica.it/gianluca/Talks/INLA.pdf

o Select a grid of points for d’;; and associated area

weights Ay, & interpolate to approximate

. . 6,y
Posterior marginal for : b o p(0.y
g Pip(Y | y) P06y
z
° T T T T T
1 2 3 4 5 6

© Weight the (conditional) marginal posteriors by the

density associated with each 1) on the grid

Posterior marginal for 6, conditional on each {4} }

o015
L

010
L

Density

Gianluca Baio

the posterior

(weighted)

Introduction to I

@ Weight the (conditional) marginal posteriors by the

density associated with each ) on the grid

Density

Y)p () Posterior marginal for 0, conditional on each {4/} } (unweighted)

o (Numerically) sum over the conditional densities to get

the marginal posterior for 6

Densiy

Posterior marginal for 0 : p(0 | y)




Step by step guide to using R-INLA

1. The first thing to do is to specify the model

e For example, assume we have a generic model

iid
yi ~ pyilb:)
ni = g(0:i) = o+ Brx1i + Baxai + f(2i)

where
— @ = (x1,22) are observed covariates for which we are assuming a linear effect on some
function g(-) of the parameter 6;
B = (Bo, B1,P2) ~ Normal(O,Tfl) are unstructured (“fixed”) effects
— zis an index. This can be used to include structured (“random”), spatial,
spatio-temporal effect, etc.
— f ~ Normal(0, Q;l(TQ)) is a suitable function used to model the structured effects
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Step by step guide to using R-INLA

1. The first thing to do is to specify the model

e For example, assume we have a generic model

iid
yi ~ pyilb:)
ni = g(0:i) = o+ Brx1i + Baxai + f(2i)

where
— @ = (x1,22) are observed covariates for which we are assuming a linear effect on some
function g(-) of the parameter 6;
B = (Bo, B1,P2) ~ Normal(O,Tfl) are unstructured (“fixed”) effects
— zis an index. This can be used to include structured (“random”), spatial,
spatio-temporal effect, etc.
— f ~ Normal(0, Q;l(‘rg)) is a suitable function used to model the structured effects

e As mentioned earlier, this formulation can actually be used to represent quite a wide
class of models!
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Step by step guide to using R-INLA

e The model is translated in R code using a formula

e This is sort of standard in R (you would do pretty much the same for calls to
functions such as 1m, or glm, or lmer)

INLA.repo="https://inla.r-inla-download.org/R/stable”
install.packages("INLA",dep=TRUE, repos=c(getOption("repos”),INLA=INLA.repo))

formula =y ~ x1 + x2 + f(z, model=...)
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Step by step guide to using R-INLA

e The model is translated in R code using a formula

e This is sort of standard in R (you would do pretty much the same for calls to
functions such as 1m, or glm, or lmer)

INLA.repo="https://inla.r-inla-download.org/R/stable”
install.packages("INLA",dep=TRUE, repos=c(getOption("repos”),INLA=INLA.repo))

formula =y ~ x1 + x2 + f(z, model=...)

e The f() function can account for several structured effects

e This is done by specifying a different model
— iid, iid1d, iid2d, iid3d specify random effects
— rwl, rw2, arl are smooth effect of covariates or time effects
— seasonal specifies a seasonal effect
— besag models spatially structured effects (CAR)
— generic is a user-defined precision matrix
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Step by step guide to using R-INLA

2. Call the function inla, specifying the data and options (more on this later), e.g.

m = inla(formula, data=data.frame(y,x1,x2,z),...)
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Step by step guide to using R-INLA

2. Call the function inla, specifying the data and options (more on this later), e.g.

m = inla(formula, data=data.frame(y,x1,x2,z),...)

e The data need to be included in a suitable data.frame
e R returns an object m in the class inla, which has some methods available
— summary ()
- plot()
e The options let you specify the priors and hyperpriors, together with additional
output
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Example Low birth weight data

e Logistic regression — data available in the brinla package
(https://github.com/julianfaraway/brinla)

library(INLA)

data(lowbwt, package = "brinla")
head (lowbwt)

LOW AGE LWT RACE SMOKE HT UI FTV

1 1 28 120 3 1 0 1 4
2 1 29130 1 0 0 1 2
3 1 34187 2 11 0 0
4 1 25105 3 o 1 0 0
5 1 25 85 3 0 0 1 0
6 1 27 150 3 o 0 0 0

formula = LOW ~ AGE + LWT + RACE + SMOKE + HT + UI + FTV

m = inla(formula, data=lowbwt, family = "binomial”, Ntrials = 1,
control.compute = list(dic = TRUE, cpo = TRUE))

Gianluca Baio (UCL) Introduction to INLA



Example Low birth weight data

summary (m)

Time used:
Pre-processing Running inla Post-processing Total
0.21849060 0.07591939 0.03839827 0.33280826

Fixed effects:

mean sd 0.025quant 0.5quant @.975quant mode kld
(Intercept) ©.56670 1.185563 -1.72706 ©.55532 2.924583 0.53281 1.187e-07
AGE -0.02068 0.035961 -0.09215 -0.02039 0.049074 -0.01980 2.311e-07
LWT -0.01760 0.006853 -0.03167 -0.01739 -0.004754 -0.01696 1.425e-06
RACE2 1.34018 0.527674 0.31539 1.33639  2.385517 1.32888 3.483e-07
RACE3 0.94550 0.436262 0.10374 0.94057 1.815536 ©.93082 3.124e-08
SMOKE1 1.07495 0.395395 0.31524 1.06945 1.866740 1.05857 4.189e-09
HT1 1.97339 0.694087 0.66337 1.95455 3.391165 1.91703 9.834e-07
uI1 0.93286 0.448558 0.05220 ©0.93284 1.812824 0.93284 9.883e-08
FTV 0.05591 ©.171968 -0.28921 0.05852 ©.386280 ©0.06369 3.120e-08

The model has no random effects
The model has no hyperparameters

Expected number of effective parameters(std dev): 8.999(0.00)
Number of equivalent replicates : 21.00

Deviance Information Criterion (DIC) ...............: 221.20
Deviance Information Criterion (DIC, saturated) ....: 221.20
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Example Low birth weight data

e By default, INLA uses “minimally informative” priors for the model parameters. But
can modify in various ways
— “Penalised Complexity” Prior — invariant to reparameterisations & linked to
“objective”, Jeffreys’ priors
— Standard distributions with fixed parameters

priors = list(mean.intercept=0, prec.intercept=10"(-2),
mean=1ist (AGE=log(.5), SMOKE1=log(2), default=0), prec=.5"(-2))

"binomial”, Ntrials =1,

m2 = inla(formula, data=lowbwt, family =
= TRUE, cpo = TRUE),control.fixed=priors)

control.compute = list(dic

print(m2$summary.fixed,digits=4)

mean sd 0.025quant ©.5quant ©.975quant mode kld
(Intercept) ©.942691 1.07101 -1.11482 0.927722 3.087720 ©.898064 5.262e-09
AGE -0.032257 0.03383 -0.09999 -0.031804 0.032901 -0.030904 4.904e-10
LWT -0.012983 0.00628 -0.02586 -0.012790 -0.001199 -0.012406 1.352e-06
RACE2 0.538491 0.35252 -0.15720 ©.539704 1.226768 ©0.542148 8.830e-07
RACE3 0.436564 0.30300 -0.15892 0.436762 1.030369 0.437185 8.350e-07
SMOKE1 0.793426 0.28788 0.23013 0.792763 1.359874 ©.791464 1.013e-06
HT1 0.661096 0.39972 -0.12790 0.662528 1.441378 0.665414 8.627e-07
uI1 0.456288 0.33115 -0.19716 0.457404 1.102905 ©@.459653 8.929e-07
FTV -0.004357 0.15674 -0.31955 -0.001754 ©0.296136 ©.003412 8.787e-08
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Example Low birth weight data

Regression Estimates

-1 0 1 2 3
L ] 1 1 ]
v ——
I I
Uil —_—

e —

HT1 ‘
SMOKE1 —_—
RACE3 i
RACE2 34:.7
LWT ;
AGE %
Intercept) :

—e— Default prior

—e— Modified prior W
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Example Longitudinal data — health effects of air pollution

data(ohio, package = "brinla")
formula = resp ~ age + smoke + f(id, model="iid")
m = inla(formula, family="binomial”, data=ohio, control.compute=1list(config=TRUE))

Intercept age

density
5
density

0o
logit logit
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Simulating from the posterior distributions

e Arguably, one of the main advantages of MCMC is that, given convergence, the
output is given by samples from the joint posterior distribution of all parameters,
p(0|y)

— Can obtain all marginal distributions p(6; | y) by simply selecting the relevant
simulations

— Can obtain simulations from the posterior distribution of any function g(6;) by simply
applying the function to the simulations for 6;
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Simulating from the posterior distributions

e Arguably, one of the main advantages of MCMC is that, given convergence, the
output is given by samples from the joint posterior distribution of all parameters,
p(6|y)

— Can obtain all marginal distributions p(6; | y) by simply selecting the relevant
simulations

— Can obtain simulations from the posterior distribution of any function g(6;) by simply
applying the function to the simulations for 6;

e INLA is a bit more complicated

— Can use Monte Carlo to obtain simulations from the posterior distributions
— However, because of how it works, the estimates are for the marginal posterior
distributions for each model parameter

— Can use specialised functions based on copulz to approximate the underlying joint
posterior and then MC-simulate

jpost = inla.posterior.sample(n=1000,m)

pos = pmatch(rownames(m$summary.fixed),rownames(jpost[[1]]$latent))

sim <- matrix(unlist(lapply(jpost,function(x) x$latent[pos,])),ncol=length(pos),byrow=T)
colnames(sim) <- m$names.fixed
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Simulating from the posterior distributions

head(sim)

(Intercept) age smoke
[1,] -2.927550 -0.2021857 0.2968993
[2,] -3.196615 -0.1806465 0.7236093
[3,] -3.006732 -0.1474960 0.4901844
[4,] -2.926754 -0.2207513 0.2648405
[5,1 -2.909527 -0.1479024 0.4605895
[6,] -2.796352 -0.1622534 0.2770397

sum(sim[, "age"”1>0)/nrow(sim)

[1] 0.004

sum(exp(sim[, "smoke"”1)>1)/nrow(sim)

[1] 0.944
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Simulating from the posterior distributions

hist(sim[,"age"],xlab="Age (log OR)",main="Posterior distribution for log OR for Age")
abline(v=0,1lwd=3)

Posterior distribution for log OR for Age

150 250 300
I I |

Frequency

50
I

r T T T
-0.4 -0.3 -0.2 -0.1 0.0

Age (log OR)
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Simulating from the posterior distributions

plot(exp(sim[, "age"]),exp(sim[, "smoke"]),pch=20,cex=.7,xlab="Age",
ylab="Smoke",main="Joint posterior”,axes=F)

axis(1); axis(2)

abline(v=1,1lwd=2); abline(h=1,1lwd=2)

Joint posterior

25

Smoke

15

1.0

r T T T T T
0.70 0.75 0.80 0.85 0.90 0.95 1.00

Age
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Using INLA in practice. .. In health economic evaluation

Running time (secs) Estimated values
© _ - GPregression 70 7 » Both methods 2100 2100 2100 2100
™~ 71+ INLA-SPDE - GP
66 9  + SPDE-INLA
S 4
o _| N
©
52
o _
3 . s 8 |
Q @
a I 7 B
e . g 18
= g g
[ _
8 8 & @
26
o 21
g1 . . 1488
14 S
o
= 8
s 7 7T & T & & s 6 6 6 1389 1280 1280 1290 1290 1290
T T T T T T T T T T T 1 T T T T T T T T T T T 1
5 6 7 8 9 10 11 12 13 14 15 16 5 6 7 8 9 10 11 12 13 14 15 16
Number of important parameters Number of important parameters

Running time for a single value of k (willingness to pay)

e Fictional decision tree model with correlated parameters
e 2 treatment options and overall 19 parameters

o Parameters simulated from multivariate Normal distribution, so can compute exact EVPPI

Heath et al Statistics in Medicine. 2016; 35(23): 4264-4280 W
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Using INLA in practice. .. In health economic evaluation

Running time (secs) Estimated values
+ GP regression 470 + GP regression 155
+ INLA-SPDE * INLA-SPDE
° w |
-~
S -
I L4 48 a8
143 143
o 143 <
. g L 47 130 139 4 M
7 :
% = 136 136
~ 0
[ o 134 134 134 134
E o o 132 132
27 188 % 3
o -
o 121
S 4 122
- N
s 86 o 84 -
2 4 7 © 117
177 7 7 7 7 6 6 7 6 7 6 7 LiaLaa
© T T T T T T T T T T T 1 T T T T T T T T T T T 1
5 6 7 8 9 10 11 12 13 14 15 16 5 6 7 8 9 10 11 12 13 14 15 16
Number of important parameters Number of important parameters
Running time for a single value of k (willingness to pay)
o Cost-effectiveness model for influenza vaccine based on evidence synthesis
e 2 treatment options and overall 63 parameters
e Model not available in closed form (needs MCMC simulations)

Heath et al Statistics in Medicine. 2016; 35(23): 4264-4280 W
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Using INLA in practice. .. Predicting football results

92 Machine Learning (2019) 108:77-95

Table 5 Ranked probability score and classification accuracy for the models in Table 4, as estimated from the
validation framework of Section 5 (standard errors are in parentheses) and from the matches in the test set of
the challenge

Model Ranked probability score Accuracy Test
Draws Validation Test Validation

BL Davidson 0.2242 (0.0024) 0.2261 0.4472 (0.0067) 0.4515
BL Ordinal 0.2242 (0.0024) 0.2261 0.4472 (0.0067) 0.4515
CS Davidson 0.2112 (0.0028) 0.2128 0.4829 (0.0073) 0.5194
Ccs Ordinal 0.2114 (0.0028) 0.2129 0.4779 (0.0074) 0.4951
LF Davidson 0.2088 (0.0026) 0.2080 0.4849 (0.0068) 0.5049
LF Ordinal 0.2088 (0.0026) 0.2084 0.4847 (0.0068) 0.5146
TVC Davidson 0.2081 (0.0026) 0.2080 0.4898 (0.0068) 0.5049
TVC Ordinal 0.2083 (0.0025) 0.2080 0.4860 (0.0068) 0.5097
AFD Ordinal 0.2079 (0.0026) 0.2061 0.4837 (0.0068) 0.5194
*HPL 0.2073 (0.0025) 0.2047 0.4832 (0.0067) 0.5485
FTVC Ordinal 0.2085 (0.0025) 0.2087 0.4865 (0.0068) 0.5388

The model indicated by * is the one we used to compute the probabilities for the submission to the MLS
challenge, while the one indicated by  is the one that achieves the lowest estimated ranked probability score
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Thank you!
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