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Health technology assessment (HTA)

Objective: Combine costs & benefits of a given intervention into a rational scheme for
allocating resources

Statistical
model

Economic
model

Decision
analysis

Uncertainty
analysis

• Estimates relevant population
parameters θ

• Varies with the type of
available data (& statistical
approach!)

• Combines the parameters to obtain
a population average measure for
costs and clinical benefits

• Varies with the type of available
data & statistical model used

• Summarises the economic model
by computing suitable measures of
“cost-effectiveness”

• Dictates the best course of
actions, given current evidence

• Standardised process

• Assesses the impact of uncertainty (eg in
parameters or model structure) on the
economic results

• Mandatory in many jurisdictions (including
NICE, in the UK)

• Fundamentally Bayesian!

∆e = fe(θ)

∆c = fc(θ)

. . .

ICER = g(∆e,∆c)

EIB = h(∆e,∆c; k)

. . .
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(“Standard”) Statistical modelling Individual level data

Demographics HRQL data Resource use data Clinical outcome
ID Trt Sex Age . . . u0 u1 . . . uJ c0 c1 . . . cJ y0 y1 . . . yJ

1 1 M 23 . . . 0.32 0.66 . . . 0.44 103 241 . . . 80 y10 y11 . . . y1J
2 1 M 21 . . . 0.12 0.16 . . . 0.38 1 204 1 808 . . . 877 y20 y21 . . . y2J
3 2 F 19 . . . 0.49 0.55 . . . 0.88 16 12 . . . 22 y30 y31 . . . y3J
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

yij = Survival time, event indicator (eg CVD), number of events, continuous measurement (eg blood pressure), . . .
uij = Utility-based score to value health (eg EQ-5D, SF-36, Hospital Anxiety & Depression Scale, . . . )
cij = Use of resources (drugs, hospital, GP appointments, . . . )

1 Compute individual QALYs and total costs as

ei =

J∑
j=1

(uij + uij−1)
δj
2

and ci =

J∑
j=0

cij ,
[

with: δj =
Timej − Timej−1

Unit of time

]

2 (Often implicitly) assume normality and linearity and model independently
individual QALYs and total costs by controlling for baseline values

ei = αe0 + αe1u0i + αe2Trti + εei [+ . . .], εei ∼ Normal(0, σe)

ci = αc0 + αc1c0i + αc2Trti + εci [+ . . .], εci ∼ Normal(0, σc)

3 Estimate population average cost and effectiveness differentials and use bootstrap to
quantify uncertainty
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QALYi = “Area under the curve”
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What’s wrong with this?...

• Potential correlation between costs & clinical benefits [Individual Level + Aggregated Level Data]

– Strong positive correlation — effective treatments are innovative and result from
intensive and lengthy research ⇒ are associated with higher unit costs

– Negative correlation — more effective treatments may reduce total care pathway costs
e.g. by reducing hospitalisations, side effects, etc.

– Because of the way in which standard models are set up, bootstrapping generally only
approximates the underlying level of correlation — MCMC does a better job!

• Joint/marginal normality not realistic [Mainly ILD]

– Costs usually skewed and benefits may be bounded in [0; 1]
– Can use transformation (e.g. logs) — but care is needed when back transforming to

the natural scale
– Should use more suitable models (e.g. Beta, Gamma or log-Normal) — generally

easier under a Bayesian framework
– “Structural” values (0 costs, unit utilities)

• ... and of course Partially Observed data
– Can have item and/or unit non-response
– Missingness may occur in either or both benefits/costs
– The missingness mechanisms may also be correlated

– Focus in decision-making, not inference — Bayesian approach particularly suited for
this!
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Missing data in HTA Selection models

MCAR (e, c)

ci

φicψc

µcxci

ei

φie ψe

µe xei

mei

πei

γe

mci

πci

γc

Model of analysis for (c, e) Model of missingness for eModel of missingness for c

Partially observed data
Unobservable parameters
Deterministic function of random quantities
Fully observed, unmodelled data
Fully observed, modelled data

• mei ∼ Bernoulli(πei); logit(πei) = γe0

• mci ∼ Bernoulli(πci); logit(πci) = γc0

G Baio (UCL) Missing data in HTA @CMStats19 CMStat 2019, 16 Dec 2019 6 / 18



Missing data in HTA Selection models

MAR (e, c)

ci

φicψc

µcxci

ei

φie ψe

µe xei

mei

πei

γe

mci

πci

γc

Model of analysis for (c, e) Model of missingness for eModel of missingness for c

Partially observed data
Unobservable parameters
Deterministic function of random quantities
Fully observed, unmodelled data
Fully observed, modelled data

• mei ∼ Bernoulli(πei); logit(πei) = γe0 +
∑K
k=1 γekxeik

• mci ∼ Bernoulli(πci); logit(πci) = γc0 +
∑H
h=1 γchxcih

G Baio (UCL) Missing data in HTA @CMStats19 CMStat 2019, 16 Dec 2019 6 / 18
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Missing data in HTA Pattern mixture models

MAR (e, c)

cri

φr
icψr

c

µr
cxr

ci

eri

φr
ie ψr

e

µr
e xr

ei

ri

λr

αr

Conditional model for (c, e | r)Model for r

For r ∈ R ≡ [(1, 1), (0, 1), (1, 0), (0, 0)]Partially observed data
Unobservable parameters
Deterministic function of random quantities
Fully observed, unmodelled data
Fully observed, modelled data

• ri = (mei,mci) ∼ Multinomial(λr); µe =
∑
r∈R

µr
eλ

r; µc =
∑
r∈R

µr
cλ

r

• CC restriction: µ
(0,1)
e = µ

(0,0)
e = µ

(1,1)
e ; µ

(1,0)
c = µ

(0,0)
c = µ

(1,1)
c
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Example: PBS trial

• Multi-centre RCT that evaluates the cost-effectiveness of a new multicomponent
intervention for individuals suffering from intellectual disability and
challenging behaviour
• Both utilities (EQ-5D) and costs (clinic records) are partially-observed
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Example: PBS trial Partially observed data

• Multi-centre RCT that evaluates the cost-effectiveness of a new multicomponent
intervention for individuals suffering from intellectual disability and
challenging behaviour
• Both utilities (EQ-5D) and costs (clinic records) are partially-observed
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Example: PBS trial QALYs and total costs

• Multi-centre RCT that evaluates the cost-effectiveness of a new multicomponent
intervention for individuals suffering from intellectual disability and
challenging behaviour
• Both utilities (EQ-5D) and costs (clinic records) are partially-observed
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Example: PBS trial Modelling strategy

• In reality, the data have a longitudinal nature and particularly in the presence of
missing data we have several advantages in fully exploiting it

– Account for time dependence between outcomes yij = (uij , cij)
– Use all available utility/cost data in each pattern rij = (ruij , r

c
ij)

• Can use pattern mixture model

1 Factorise p(y, r) into p(yrobs, r) and p(yrmis | yrobs, r)
2 Integrate out yrmis from p(y, r) and estimate the means of yrobs

3 Identify the means of yrmis using:

• The mean estimates of yrobs
• Sensitivity parameters ∆ = (∆u,∆c)

• Assess the robustness of the results to plausible MNAR scenarios using different
informative priors on ∆
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Example: PBS trial Utilities

Control Intervention
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Example: PBS trial Costs
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Example: PBS trial Missingness patterns

Control (t = 1) Intervention (t = 2)
u0 c0 u1 c1 u2 c2 nr

1 u0 c0 u1 c1 u2 c2 nr
2

r 1 1 1 1 1 1
108

1 1 1 1 1 1
96 → r = 1

mean 0.678 1546 0.684 1527 0.680 1520 0.726 2818 0.771 2833 0.759 2878
r 0 1 1 1 1 1

7
0 1 1 1 1 1

5



r 6= 1

mean – 1310 0.704 1440 0.644 1858 – 2573 0.780 2939 0.849 2113
r 1 1 0 1 1 1

4
1 1 0 1 1 1

1
mean 0.709 1620 – 1087 0.737 851 0.467 9649 – 4828 0.259 4930
r 1 1 1 1 0 1

2
1 1 1 1 0 1

1
mean 0.564 640 0.648 512 – 286 0.817 3788 0.884 0 – 0
r 1 1 0 0 1 1

4
1 1 0 0 1 1

1
mean 0.716 2834 – – 0.634 679 0.501 3608 – – 0.872 4781
r 1 1 0 0 0 0

4
1 1 0 0 0 0

4
mean 0.434 1528 – – – – 0.760 3086 – – – –
r 0 1 0 1 1 1

2
0 1 0 1 1 1

0
mean – 595 – 397 0.483 69 – – – – – –
r 1 1 1 1 0 0

2
1 1 1 1 0 0

0
mean 0.743 1434 0.705 1606 – – – – – – – –
r 1 1 0 1 0 1

3
1 1 0 1 0 1

0
mean 0.726 1510 – 432 – 976 – – – – – –
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Example: PBS trial Mean profiles
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Modelling Pattern mixture model

• Fit model to completers r = 1 and joint set of all other patterns r 6= 1 separately
for t = 1, 2

• Capture outcome and time dependence through a series of conditional distributions
p(cij | cij−1, uij−1) and p(uij | cij , uij−1)

• Account for skewness using

– Beta distributions for u?ij =
uij −min(uj)

max(uj)−min(uj)
– LogNormal distributions for cij

• Allow for structural ones in uij and zeros in cij
– Define duij := I(uij = 1) and dcij := I(cij = 0)

– Use a hurdle model to account for mixture of patients within the groups
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Modelling Gabrio et al. JRSS/A (2019). doi:10.1111/rssa.12522

• At j = 0

c>0
i0tc0i0t

ci0t

φc0tψc0t

u<1
i0t

φui0t ψu0t

α0t

u1i0t

ui0t

πui0t

dui0t

η0tπc0t

dci0t

Model for dc0
dci0t := I(ci0t = 0) ∼ Bernoulli(πc0t)

Mixture model for c0

c0i0t := 0

c>0
i0t ∼ LogNormal(φc0t, ψ

c
0t)

ci0t = πc0tc
0
i0t + (1− πc0t)c

>0
i0t

Model for du0 | c0
dui0t := I(ui0t = 1) ∼ Bernoulli(πui0t)

logit(πui0t) = η00t + η10t log ci0t

Mixture model for u0 | c0
u1
i0t := 1

u<1
i0t ∼ Beta

(
φui0tψ

u
0t, (1− φ

u
i0t)ψ

u
0t

)
logit(φui0t) = α00t + α10t log ci0t

ui0t = πui0tu
1
i0t + (1− πui0t)u

<1
i0t
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Modelling Gabrio et al. JRSS/A (2019). doi:10.1111/rssa.12522

• At j = 1, 2
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Identifying restrictions and sensitivity parameters

• Use Monte Carlo integration to derive the mean estimates E[yr
obs]

• Identify the mean estimates E[yr
mis] = E[yr

obs + ∆j ]

• Compute weighted average across r to derive µjt = (µujt, µ
c
jt)

• Set ∆j = 0 as benchmark assumption

• Specify three alternative priors on ∆j = (∆u
j ,∆

c
j), calibrated based on the

variability in the observed data at each time j
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Priors on sensitivity parameters

• Assumption: umis < uobs and cmis > cobs

• ∆flat: Flat between 0 and twice the observed standard deviation
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Priors on sensitivity parameters

• Assumption: umis < uobs and cmis > cobs

• ∆skew0: Skewed towards values closer to 0 on the same range as ∆flat
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Priors on sensitivity parameters

• Assumption: umis < uobs and cmis > cobs

• ∆skew1: Skewed towards values far from 0 on the same range as ∆flat
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Results: means utilities and costs
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Cost-effectiveness analysis
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Conclusions Bayesian approach for missing data in HTA

1 Flexibility of the modelling framework
– Naturally allows the propagation of uncertainty to the economic model
– Uses a modular structure to account for complexities that may bias inferences and

mislead the economic assessment
– Can extend complex models to a longitudinal framework in a relatively easy way

2 Extension of standard “imputation methods”
– Performs the estimation and imputation tasks simultaneously
– Fits joint models for missing data in a relatively easy way
– Uses probabilistic appraoches that can be implemented in standard software

(e.g. OpenBUGS or JAGS)

3 Principled incorporation of external evidence through priors
– Crucial for conducting sensitivity analysis to MNAR
– Useful in small/pilot trials where there is limited evidence
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Thank you!
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