Bayesian parametric models to handle missing longitudinal outcome data in trial-based health economic evaluations

Gianluca Baio

University College London Department of Statistical Science

g.baio@ucl.ac.uk

Joint work with Andrea Gabrio (UCL) and Michael J Daniels (University of Florida)

http://www.ucl.ac.uk/statistics/research/statistics-health-economics/ http://www.statistica.it/gianluca https://github.com/giabaio

12th International Conference of the ERCIM WG on Computational and Methodological Statistics

Invited session: "Sensitivity analysis for uncheckable assumptions"

Monday 16 December 2019

1. Health economic evaluation

- What is it?
- How does it work?
- 2. Statistical modelling
 - Standard approach
 - The importance of being a Bayesian
- 3. Bayesian modelling for missing data in HTA
 - Modelling & advantages
 - Bayesian nature of dealing with missing data
- 4. Motivating example
 - Data (and their weird features...) & Bayesian modelling
 - Results
- 5. Conclusions

1. Health economic evaluation

- What is it?
- How does it work?

2. Statistical modelling

- Standard approach
- The importance of being a Bayesian
- 3. Bayesian modelling for missing data in HTA
 - Modelling & advantages
 - Bayesian nature of dealing with missing data
- 4. Motivating example
 - Data (and their weird features...) & Bayesian modelling
 - Results
- 5. Conclusions

- 1. Health economic evaluation
 - What is it?
 - How does it work?
- 2. Statistical modelling
 - Standard approach
 - The importance of being a Bayesian

3. Bayesian modelling for missing data in HTA

- Modelling & advantages
- Bayesian nature of dealing with missing data
- 4. Motivating example
 - Data (and their weird features...) & Bayesian modelling
 - Results
- 5. Conclusions

- 1. Health economic evaluation
 - What is it?
 - How does it work?
- 2. Statistical modelling
 - Standard approach
 - The importance of being a Bayesian
- 3. Bayesian modelling for missing data in HTA
 - Modelling & advantages
 - Bayesian nature of dealing with missing data

4. Motivating example

- Data (and their weird features...) & Bayesian modelling
- Results

5. Conclusions

- 1. Health economic evaluation
 - What is it?
 - How does it work?
- 2. Statistical modelling
 - Standard approach
 - The importance of being a Bayesian
- 3. Bayesian modelling for missing data in HTA
 - Modelling & advantages
 - Bayesian nature of dealing with missing data
- 4. Motivating example
 - Data (and their weird features...) & Bayesian modelling
 - Results

5. Conclusions

Objective: Combine costs & benefits of a given intervention into a rational scheme for allocating resources

Objective: Combine costs & benefits of a given intervention into a rational scheme for allocating resources

- Estimates relevant population parameters θ
- Varies with the type of available data (& statistical approach!)

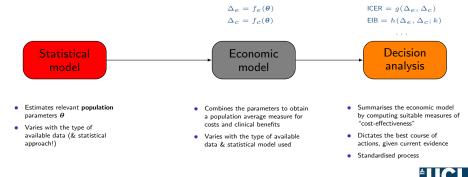
Objective: Combine costs & benefits of a given intervention into a rational scheme for allocating resources

 Varies with the type of available data & statistical model used

available data (& statistical

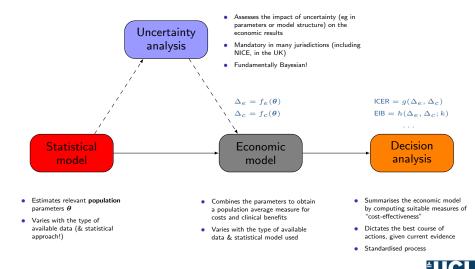
approach!)

Objective: Combine costs & benefits of a given intervention into a rational scheme for allocating resources



Missing data in HTA @CMStats19

Objective: Combine costs & benefits of a given intervention into a rational scheme for allocating resources



Missing data in HTA @CMStats19

	Demographics					HRQL data				Resource use data					Clinical outcome			
ID	Trt	Sex	Age		u_0	u_1		u_J	c_0	c_1		c_J	y_0	y_1		y_J		
1	1	М	23		0.32	0.66		0.44	103	241		80	y_{10}	y_{11}		y_{1J}		
2	1	М	21		0.12	0.16		0.38	1 204	1 808		877	y_{20}	y_{21}		y_{2J}		
3	2	F	19		0.49	0.55		0.88	16	12		22	y_{30}	y_{31}		y_{3J}		

 $y_{ij}=$ Survival time, event indicator (eg CVD), number of events, continuous measurement (eg blood pressure), \dots

 $u_{ij} =$ Utility-based score to value health (eg EQ-5D, SF-36, Hospital Anxiety & Depression Scale, ...)

 $c_{ij} = \mathsf{Use} \mathsf{ of resources} (\mathsf{drugs}, \mathsf{hospital}, \mathsf{GP} \mathsf{ appointments}, \dots)$

	Demographics					HRQL data				Resource use data				Clinical outcome			
ID	Trt	Sex	Age		u_0	u_1		u_J	c_0	c_1		c_J	y_0	y_1		y_J	
1	1	М	23		0.32	0.66		0.44	103	241		80	y_{10}	y_{11}		y_{1J}	
2	1	М	21		0.12	0.16		0.38	1 204	1 808		877	y_{20}	y_{21}		y_{2J}	
3	2	F	19		0.49	0.55		0.88	16	12		22	y_{30}	y_{31}		y_{3J}	

 $y_{ij} =$ Survival time, event indicator (eg CVD), number of events, continuous measurement (eg blood pressure), ... $u_{ij} =$ Utility-based score to value health (eg EQ-5D, SF-36, Hospital Anxiety & Depression Scale, ...) $c_{ij} =$ Use of resources (drugs, hospital, GP appointments, ...)

Compute individual QALYs and total costs as

$$e_{i} = \sum_{j=1}^{J} (u_{ij} + u_{ij-1}) \frac{\delta_{j}}{2} \text{ and } c_{i} = \sum_{j=0}^{J} c_{ij}, \qquad \left[\text{with: } \delta_{j} = \frac{\text{Time}_{j} - \text{Time}_{j-1}}{\text{Unit of time}} \right]$$

$$\overset{\circ}{=} \int_{0}^{0} \int_{0}^{0} \int_{0}^{0} \frac{u_{ij} + u_{ij-1}}{2} \int_{0}^{0} \frac{u_{ij} + u_{ij-1}}{2} \int_{0}^{0} \int_{0}^{0} \frac{u_{ij} + u_{ij-1}}{2} \int_{0}^{0} \int_{0}^{0} \frac{u_{ij} + u_{ij-1}}{2} \int_{0}^{0} \int_{0}$$

		Demographics				HRQL	data		Re	source ι	ise da	ta	Clinical outcome			
ID	Trt	Sex	Age		u_0	u_1		u_J	c_0	c_1		c_J	y_0	y_1		y_J
1	1	М	23		0.32	0.66		0.44	103	241		80	y_{10}	y_{11}		y_{1J}
2	1	Μ	21		0.12	0.16		0.38	1 204	1 808		877	y_{20}	y_{21}		y_{2J}
3	2	F	19		0.49	0.55		0.88	16	12		22	y_{30}	y_{31}		y_{3J}

 y_{ij} = Survival time, event indicator (eg CVD), number of events, continuous measurement (eg blood pressure), ... u_{ij} = Utility-based score to value health (eg EQ-5D, SF-36, Hospital Anxiety & Depression Scale, ...) c_{ij} = Use of resources (drugs, hospital, GP appointments, ...)

Compute individual QALYs and total costs as

$$e_i = \sum_{j=1}^J \left(u_{ij} + u_{ij-1} \right) \frac{\delta_j}{2} \quad \text{and} \quad c_i = \sum_{j=0}^J c_{ij}, \qquad \left[\text{with: } \delta_j = \frac{\mathsf{Time}_j - \mathsf{Time}_{j-1}}{\mathsf{Unit of time}} \right]$$

Often implicitly) assume normality and linearity and model independently individual QALYs and total costs by controlling for baseline values

$$\begin{array}{lll} e_{i} & = & \alpha_{e0} + \alpha_{e1}u_{0i} + \alpha_{e2}\mathsf{Trt}_{i} + \varepsilon_{ei} \, [+ \ldots], & & \varepsilon_{ei} \sim \mathsf{Normal}(0, \sigma_{e}) \\ c_{i} & = & \alpha_{c0} + \alpha_{c1}c_{0i} + \alpha_{c2}\mathsf{Trt}_{i} + \varepsilon_{ci} \, [+ \ldots], & & \varepsilon_{ci} \sim \mathsf{Normal}(0, \sigma_{c}) \end{array}$$

CMStat 2019 16 Dec 2019

		Demographics				HRQL	data		Re	source ı	ise da	ta	Clinical outcome			
ID	Trt	Sex	Age		u_0	u_1		u_J	c_0	c_1		c_J	y_0	y_1		y_J
1	1	М	23		0.32	0.66		0.44	103	241		80	y_{10}	y_{11}		y_{1J}
2	1	Μ	21		0.12	0.16		0.38	1 204	1 808		877	y_{20}	y_{21}		y_{2J}
3	2	F	19		0.49	0.55		0.88	16	12		22	y_{30}	y_{31}		y_{3J}

 $y_{ij} =$ Survival time, event indicator (eg CVD), number of events, continuous measurement (eg blood pressure), ... $u_{ij} =$ Utility-based score to value health (eg EQ-5D, SF-36, Hospital Anxiety & Depression Scale, ...) $c_{ij} =$ Use of resources (drugs, hospital, GP appointments, ...)

Compute individual QALYs and total costs as

$$e_i = \sum_{j=1}^J \left(u_{ij} + u_{ij-1} \right) \frac{\delta_j}{2} \quad \text{and} \quad c_i = \sum_{j=0}^J c_{ij}, \qquad \left[\text{with: } \delta_j = \frac{\mathsf{Time}_j - \mathsf{Time}_{j-1}}{\mathsf{Unit of time}} \right]$$

Often implicitly) assume normality and linearity and model independently individual QALYs and total costs by controlling for baseline values

$$\begin{array}{lll} e_{i} & = & \alpha_{e0} + \alpha_{e1}u_{0i} + \alpha_{e2}\mathsf{Trt}_{i} + \varepsilon_{ei} \, [+ \ldots], & & \varepsilon_{ei} \sim \mathsf{Normal}(0, \sigma_{e}) \\ c_{i} & = & \alpha_{c0} + \alpha_{c1}c_{0i} + \alpha_{c2}\mathsf{Trt}_{i} + \varepsilon_{ci} \, [+ \ldots], & & \varepsilon_{ci} \sim \mathsf{Normal}(0, \sigma_{c}) \end{array}$$

 Estimate population average cost and effectiveness differentials and use bootstrap to quantify uncertainty

G Baio (UCL)

- Potential correlation between costs & clinical benefits [Individual Level + Aggregated Level Data]
 - Strong positive correlation effective treatments are innovative and result from intensive and lengthy research \Rightarrow are associated with higher unit costs
 - Negative correlation more effective treatments may reduce total care pathway costs e.g. by reducing hospitalisations, side effects, etc.
 - Because of the way in which standard models are set up, bootstrapping generally only approximates the underlying level of correlation MCMC does a better job!

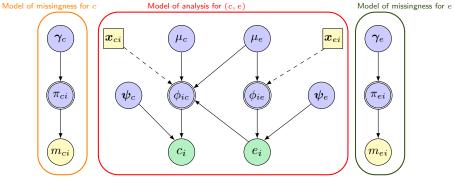
- Potential correlation between costs & clinical benefits [Individual Level + Aggregated Level Data]
 - Strong positive correlation effective treatments are innovative and result from intensive and lengthy research \Rightarrow are associated with higher unit costs
 - Negative correlation more effective treatments may reduce total care pathway costs e.g. by reducing hospitalisations, side effects, etc.
 - Because of the way in which standard models are set up, bootstrapping generally only approximates the underlying level of correlation MCMC does a better job!
- Joint/marginal normality not realistic
 - Costs usually skewed and benefits may be bounded in [0;1]
 - Can use transformation (e.g. logs) but care is needed when back transforming to the natural scale
 - Should use more suitable models (e.g. Beta, Gamma or log-Normal) generally easier under a Bayesian framework
 - "Structural" values (0 costs, unit utilities)

[Mainly ILD]

- Potential correlation between costs & clinical benefits [Individual Level + Aggregated Level Data]
 - Strong positive correlation effective treatments are innovative and result from intensive and lengthy research \Rightarrow are associated with higher unit costs
 - Negative correlation more effective treatments may reduce total care pathway costs e.g. by reducing hospitalisations, side effects, etc.
 - Because of the way in which standard models are set up, bootstrapping generally only approximates the underlying level of correlation MCMC does a better job!
- Joint/marginal normality not realistic
 - Costs usually skewed and benefits may be bounded in [0;1]
 - Can use transformation (e.g. logs) but care is needed when back transforming to the natural scale
 - Should use more suitable models (e.g. Beta, Gamma or log-Normal) generally easier under a Bayesian framework
 - "Structural" values (0 costs, unit utilities)
- ... and of course Partially Observed data
 - Can have item and/or unit non-response
 - Missingness may occur in either or both benefits/costs
 - The missingness mechanisms may also be correlated
 - Focus in decision-making, not inference Bayesian approach particularly suited for this!

[Mainly ILD]

MCAR(e, c)



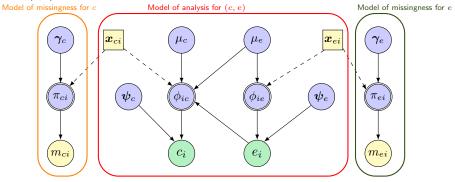
- O Partially observed data
- Unobservable parameters
 Deterministic function of random quantities
 Fully observed, unmodelled data
 Fully observed, modelled data

- $m_{ei} \sim \text{Bernoulli}(\pi_{ei});$
- $m_{ci} \sim \text{Bernoulli}(\pi_{ci});$

 $logit(\pi_{ei}) = \gamma_{e0}$

 $logit(\pi_{ci}) = \gamma_{c0}$

MAR (e, c)



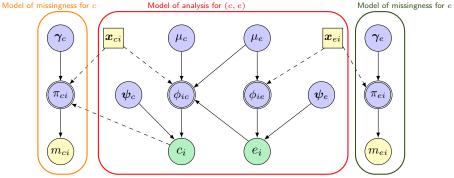
- Partially observed data
- O Unobservable parameters
- O Deterministic function of random quantities
 Fully observed, unmodelled data
 Fully observed, modelled data

- $m_{ei} \sim \text{Bernoulli}(\pi_{ei});$
- $m_{ci} \sim \text{Bernoulli}(\pi_{ci});$

$$\begin{aligned} \mathsf{logit}(\pi_{ei}) &= \gamma_{e0} + \sum_{k=1}^{K} \gamma_{ek} x_{eik} \\ \mathsf{logit}(\pi_{ci}) &= \gamma_{c0} + \sum_{h=1}^{H} \gamma_{ch} x_{cih} \end{aligned}$$

CMStat 2019, 16 Dec 2019 6 / 18

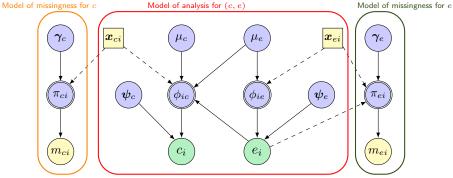
MAR e; MNAR c



- Partially observed data
- O Unobservable parameters
- © Deterministic function of random quantities Fully observed, unmodelled data
- Fully observed, modelled data
- $m_{ei} \sim \text{Bernoulli}(\pi_{ei});$
- $m_{ci} \sim \text{Bernoulli}(\pi_{ci});$

$$\begin{aligned} \mathsf{logit}(\pi_{ei}) &= \gamma_{e0} + \sum_{k=1}^{K} \gamma_{ek} x_{eik} \\ \mathsf{logit}(\pi_{ci}) &= \gamma_{c0} + \sum_{h=1}^{H} \gamma_{ch} x_{cih} + \gamma_{cH+1} c_i \end{aligned}$$

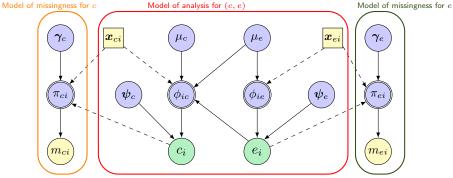
MNAR e; MAR c



- Partially observed data
- O Unobservable parameters
- © Deterministic function of random quantities Fully observed, unmodelled data
- Fully observed, modelled data
- $m_{ei} \sim \text{Bernoulli}(\pi_{ei});$
- $m_{ci} \sim \text{Bernoulli}(\pi_{ci});$

$$\begin{split} \text{logit}(\pi_{ei}) &= \gamma_{e0} + \sum_{k=1}^{K} \gamma_{ek} x_{eik} + \gamma_{eK+1} e_i \\ \text{logit}(\pi_{ci}) &= \gamma_{c0} + \sum_{h=1}^{H} \gamma_{ch} x_{cih} \end{split}$$

MNAR (e, c)

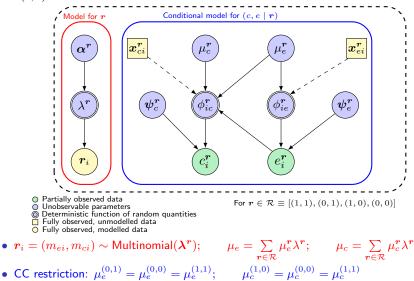


- Partially observed data
- O Unobservable parameters
- O Deterministic function of random quantities
 Fully observed, unmodelled data
 Fully observed, modelled data

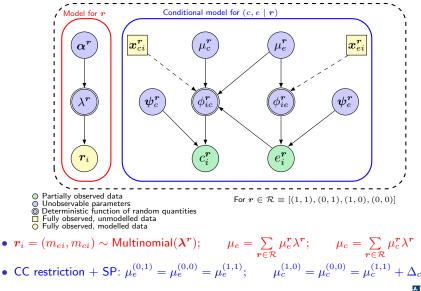
- $m_{ei} \sim \text{Bernoulli}(\pi_{ei});$
- $m_{ci} \sim \text{Bernoulli}(\pi_{ci});$

$$\begin{aligned} \mathsf{logit}(\pi_{ei}) &= \gamma_{e0} + \sum_{k=1}^{K} \gamma_{ek} x_{eik} + \gamma_{eK+1} e_i \\ \mathsf{logit}(\pi_{ci}) &= \gamma_{c0} + \sum_{h=1}^{H} \gamma_{ch} x_{cih} + \gamma_{cH+1} c_i \end{aligned}$$

MAR (e, c)

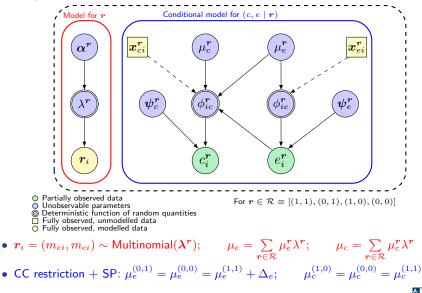


MAR e; MNAR c

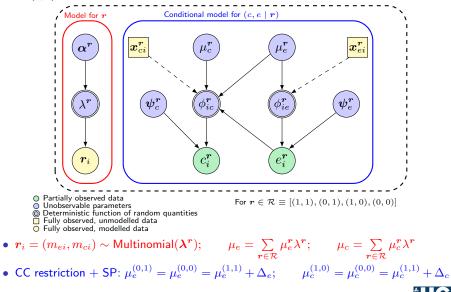


7 / 18

MNAR e; MAR c



MNAR (e, c)



7 / 18

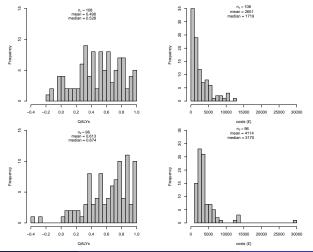
Example: PBS trial

- Multi-centre RCT that evaluates the cost-effectiveness of a new multicomponent intervention for individuals suffering from intellectual disability and challenging behaviour
- Both utilities (EQ-5D) and costs (clinic records) are partially-observed

- Multi-centre RCT that evaluates the cost-effectiveness of a new multicomponent intervention for individuals suffering from intellectual disability and challenging behaviour
- Both utilities (EQ-5D) and costs (clinic records) are partially-observed

Time	Control	(n1=136)	Intervention (n_2 =108)					
	observ	red (%)	observed (%)					
	utilities	costs	utilities	costs				
Baseline	127 (93%)	136 (100%)	103 (95%)	108 (100%)				
6 months	119 (86%)	128 (94%)	102 (94%)	103 (95%)				
12 months	125 (92%)	130 (96%)	103 (95%)	104 (96%)				
complete cases	108	(79%)	96 (89%)					

- Multi-centre RCT that evaluates the cost-effectiveness of a new multicomponent intervention for individuals suffering from intellectual disability and challenging behaviour
- Both utilities (EQ-5D) and costs (clinic records) are partially-observed



8 / 18

- In reality, the data have a longitudinal nature and particularly in the presence of missing data we have several advantages in fully exploiting it
 - Account for time dependence between outcomes $oldsymbol{y}_{ij} = (u_{ij}, c_{ij})$
 - Use all available utility/cost data in each pattern $r_{ij} = (r_{ij}^u, r_{ij}^c)$

- In reality, the data have a longitudinal nature and particularly in the presence of missing data we have several advantages in fully exploiting it
 - Account for time dependence between outcomes $y_{ij} = (u_{ij}, c_{ij})$
 - Use all available utility/cost data in each pattern $\vec{r_{ij}} = (r_{ij}^u, r_{ij}^c)$

• Can use pattern mixture model

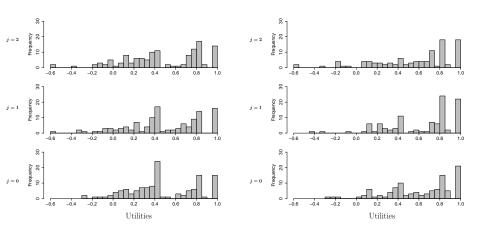
- Factorise p(y, r) into $p(y_{obs}^r, r)$ and $p(y_{mis}^r \mid y_{obs}^r, r)$
- 2 Integrate out $\boldsymbol{y}_{mis}^{\boldsymbol{r}}$ from $p(\boldsymbol{y}, \boldsymbol{r})$ and estimate the means of $\boldsymbol{y}_{obs}^{\boldsymbol{r}}$
- 3 Identify the means of y_{mis}^r using:
 - The mean estimates of y_{obs}^r
 - Sensitivity parameters $\mathbf{\Delta} = (\Delta_u, \Delta_c)$

- In reality, the data have a longitudinal nature and particularly in the presence of missing data we have several advantages in fully exploiting it
 - Account for time dependence between outcomes $y_{ij} = (u_{ij}, c_{ij})$
 - Use all available utility/cost data in each pattern $\vec{r_{ij}} = (r_{ij}^u, r_{ij}^c)$
- Can use pattern mixture model
 - Factorise p(y, r) into $p(y_{obs}^r, r)$ and $p(y_{mis}^r \mid y_{obs}^r, r)$
 - 2 Integrate out $\boldsymbol{y}_{mis}^{\boldsymbol{r}}$ from $p(\boldsymbol{y}, \boldsymbol{r})$ and estimate the means of $\boldsymbol{y}_{obs}^{\boldsymbol{r}}$
 - 3 Identify the means of y_{mis}^r using:
 - The mean estimates of y_{obs}^r
 - Sensitivity parameters $\mathbf{\Delta} = (\Delta_u, \Delta_c)$
- Assess the robustness of the results to plausible MNAR scenarios using different informative priors on Δ

Example: PBS trial

Control

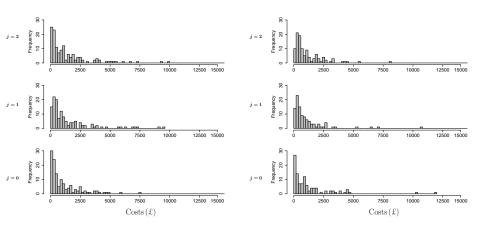
Intervention



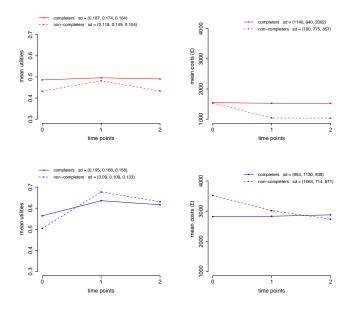
Example: PBS trial

Control

Intervention



			Control	(t = 1)				Int	erventi	on (t =	= 2)			
	u_0	c_0	u_1	c_1	u_2	C_2	n_1^r	u_0	c_0	u_1	c_1	u_2	c_2	n_2^r	
r	1	1	1	1	1	1	108	1	1	1	1	1	1	96	$\rightarrow r = 1$
mean	0.678	1546	0.684	1527	0.680	1520	100	0.726	2818	0.771	2833	0.759	2878	90	$\rightarrow r = 1$
r	0	1	1	1	1	1	7	0	1	1	1	1	1	5)
mean	-	1310	0.704	1440	0.644	1858	l '	-	2573	0.780	2939	0.849	2113	3	
r	1	1	0	1	1	1	4	1	1	0	1	1	1	1	
mean	0.709	1620	-	1087	0.737	851	-	0.467	9649	-	4828	0.259	4930	-	
r	1	1	1	1	0	1	2	1	1	1	1	0	1	1	
mean	0.564	640	0.648	512	-	286	286 2	0.817	3788	0.884	0	-	0	-	
r	1	1	0	0	1	1	4	1	1	0	0	1	1	1	
mean	0.716	2834	-	-	0.634	679	-	0.501	3608	-	-	0.872	4781	-	$r \neq 1$
r	1	1	0	0	0	0	4	1	1	0	0	0	0	4	(' ⁺ 1
mean	0.434	1528	-	-	-	-	-	0.760	3086	-	-	-	-	-	
r	0	1	0	1	1	1	2	0	1	0	1	1	1	0	
mean	-	595	-	397	0.483	69	L 2	-	-	-	-	-	-	U	
r	1	1	1	1	0	0	2	1	1	1	1	0	0	0	
mean	0.743	1434	0.705	1606	-	-	1	-	-	-	-	-	-	U	
r	1	1	0	1	0	1	3	1	1	0	1	0	1	0	
mean	0.726	1510	-	432	-	976	1	-	-	-	-	-	-	U I	J



Missing data in HTA @CMStats19

CMStat 2019, 16 Dec 2019

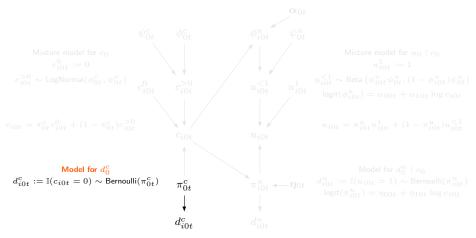
• Fit model to completers r=1 and joint set of all other patterns r
eq 1 separately for t=1,2

- Fit model to completers r = 1 and joint set of all other patterns $r \neq 1$ separately for t = 1, 2
- Capture outcome and time dependence through a series of conditional distributions $p(c_{ij} \mid c_{ij-1}, u_{ij-1})$ and $p(u_{ij} \mid c_{ij}, u_{ij-1})$

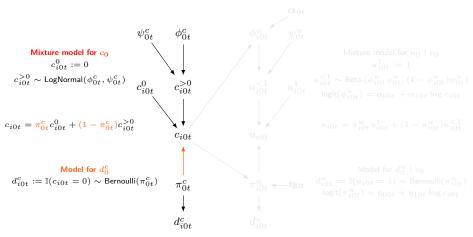
- Fit model to completers r = 1 and joint set of all other patterns $r \neq 1$ separately for t = 1, 2
- Capture outcome and time dependence through a series of conditional distributions $p(c_{ij} \mid c_{ij-1}, u_{ij-1})$ and $p(u_{ij} \mid c_{ij}, u_{ij-1})$
- Account for skewness using
 - Beta distributions for $u_{ij}^{\star} = \frac{u_{ij} \min(u_j)}{\max(u_i) \min(u_j)}$
 - LogNormal distributions for c_{ij}

- Fit model to completers r = 1 and joint set of all other patterns $r \neq 1$ separately for t = 1, 2
- Capture outcome and time dependence through a series of conditional distributions $p(c_{ij} \mid c_{ij-1}, u_{ij-1})$ and $p(u_{ij} \mid c_{ij}, u_{ij-1})$
- Account for skewness using
 - Beta distributions for $u_{ij}^{\star} = \frac{u_{ij} \min(u_j)}{\max(u_i) \min(u_j)}$
 - LogNormal distributions for c_{ij}
- Allow for structural ones in u_{ij} and zeros in c_{ij}
 - Define $d_{ij}^u := \mathbb{I}(u_{ij} = 1)$ and $d_{ij}^c := \mathbb{I}(c_{ij} = 0)$
 - Use a hurdle model to account for mixture of patients within the groups

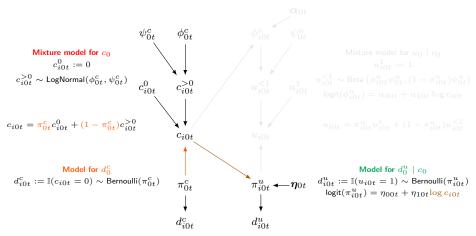
12 / 18

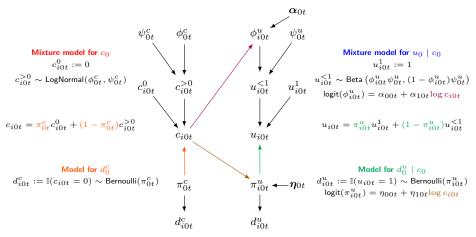


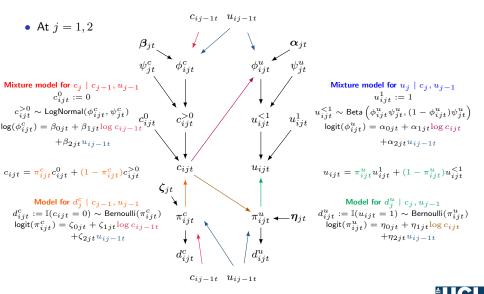
12 / 18



12 / 18







• Use Monte Carlo integration to derive the mean estimates $\mathsf{E}[y^r_{obs}]$

- Use Monte Carlo integration to derive the mean estimates $\mathsf{E}[y_{obs}^r]$
- Identify the mean estimates $\mathsf{E}[m{y}^{m{r}}_{mis}] = \mathsf{E}[m{y}^{m{r}}_{obs} + m{\Delta}_j]$

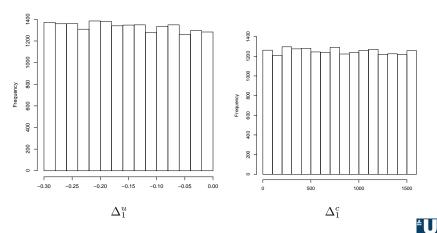
- Use Monte Carlo integration to derive the mean estimates $\mathsf{E}[y_{obs}^r]$
- Identify the mean estimates $\mathsf{E}[m{y}^{m{r}}_{mis}] = \mathsf{E}[m{y}^{m{r}}_{obs} + m{\Delta}_j]$
- Compute weighted average across r to derive $\mu_{jt} = (\mu_{jt}^u, \mu_{jt}^c)$

- Use Monte Carlo integration to derive the mean estimates $\mathsf{E}[y_{obs}^r]$
- Identify the mean estimates $\mathsf{E}[m{y}^{m{r}}_{mis}] = \mathsf{E}[m{y}^{m{r}}_{obs} + m{\Delta}_j]$
- Compute weighted average across r to derive $\mu_{jt} = (\mu^u_{jt}, \mu^c_{jt})$
- Set $\Delta_j = \mathbf{0}$ as benchmark assumption

- Use Monte Carlo integration to derive the mean estimates $\mathsf{E}[y_{obs}^r]$
- Identify the mean estimates $\mathsf{E}[m{y}^{m{r}}_{mis}] = \mathsf{E}[m{y}^{m{r}}_{obs} + m{\Delta}_j]$
- Compute weighted average across $m{r}$ to derive $m{\mu}_{jt} = (\mu^u_{jt}, \mu^c_{jt})$
- Set $\Delta_j = \mathbf{0}$ as benchmark assumption
- Specify three alternative priors on $\Delta_j = (\Delta_j^u, \Delta_j^c)$, calibrated based on the variability in the observed data at each time j

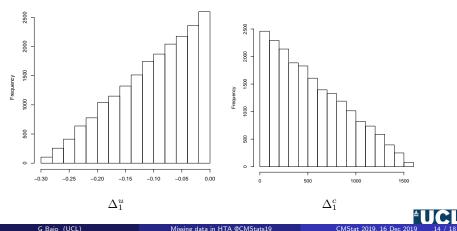
Priors on sensitivity parameters

- Assumption: $u_{mis} < u_{obs}$ and $c_{mis} > c_{obs}$
- Δ^{flat} : Flat between 0 and twice the observed standard deviation



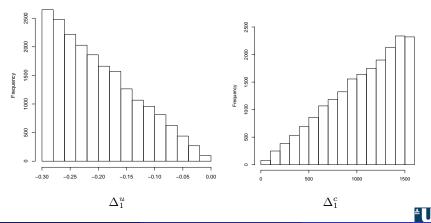
Priors on sensitivity parameters

- Assumption: $u_{mis} < u_{obs}$ and $c_{mis} > c_{obs}$
- Δ^{skew0} : Skewed towards values closer to 0 on the same range as Δ^{flat}



Priors on sensitivity parameters

- Assumption: $u_{mis} < u_{obs}$ and $c_{mis} > c_{obs}$
- Δ^{skew1} : Skewed towards values far from 0 on the same range as Δ^{flat}



G Baio (UCL)

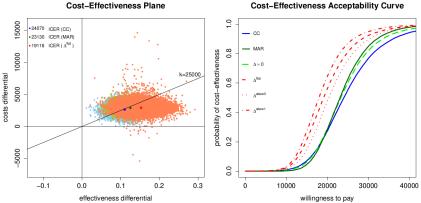
Results: means utilities and costs



Utilities

Costs (£)

CMStat 2019, 16 Dec 2019 15 / 18



Cost-Effectiveness Acceptability Curve

Flexibility of the modelling framework

- Naturally allows the propagation of uncertainty to the economic model
- Uses a modular structure to account for complexities that may bias inferences and mislead the economic assessment
- Can extend complex models to a longitudinal framework in a relatively easy way

Flexibility of the modelling framework

- Naturally allows the propagation of uncertainty to the economic model
- Uses a modular structure to account for complexities that may bias inferences and mislead the economic assessment
- Can extend complex models to a longitudinal framework in a relatively easy way

Extension of standard "imputation methods"

- Performs the estimation and imputation tasks simultaneously
- Fits joint models for missing data in a relatively easy way
- Uses probabilistic appraoches that can be implemented in standard software (e.g. OpenBUGS or JAGS)

Flexibility of the modelling framework

- Naturally allows the propagation of uncertainty to the economic model
- Uses a modular structure to account for complexities that may bias inferences and mislead the economic assessment
- Can extend complex models to a longitudinal framework in a relatively easy way

Extension of standard "imputation methods"

- Performs the estimation and imputation tasks simultaneously
- Fits joint models for missing data in a relatively easy way
- Uses probabilistic appraoches that can be implemented in standard software (e.g. OpenBUGS or JAGS)
- Principled incorporation of external evidence through priors
 - Crucial for conducting sensitivity analysis to MNAR
 - Useful in small/pilot trials where there is limited evidence

Thank you!

