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Forewarning
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Statistical inference

• Typically, we observe some data and we want to use them to learn about
some unobservable feature of the general population that we are interested in

• To do this, we use statistical models to describe the probabilistic mechanism
by which (we assume!) that the data have arisen

Data generating process

θ Parameter(s)

p(y | θ) y Data
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Sampling variability

• Size N = 10

• Mean µ

• Standard deviation σ

• Size n = 5

• Mean x̄

• Standard deviation sx

In reality we observe only one such sample (out of the many possible — in fact
there are 252 different ways of picking at random 5 units out of the population!)
and we want to use the information contained in that sample to infer about the
population parameters (e.g. the true mean and standard deviation)
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Running example: Binomial model

• Suppose in a study we observe that, in a single postcode sector, n kits for
cancer screening are sent out in a certain period, of which only y (≤ n) are
returned by patients. A reasonable model in this case is

y | θ, n ∼ Binomial(θ, n)

as a function of a parameter θ, which in this case represents the screening

uptake rate (annual uptake probability) in the overall population
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Running example: Binomial model

• Suppose in a study we observe that, in a single postcode sector, n kits for
cancer screening are sent out in a certain period, of which only y (≤ n) are
returned by patients. A reasonable model in this case is

y | θ, n ∼ Binomial(θ, n)

as a function of a parameter θ, which in this case represents the screening

uptake rate (annual uptake probability) in the overall population

• This is equivalent to assuming

p(y | θ, n) =

(

n

y

)

θy(1− θ)(n−y) ∝ θy(1 − θ)(n−y)
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Running example: Binomial model

• Suppose in a study we observe that, in a single postcode sector, n kits for
cancer screening are sent out in a certain period, of which only y (≤ n) are
returned by patients. A reasonable model in this case is

y | θ, n ∼ Binomial(θ, n)

as a function of a parameter θ, which in this case represents the screening

uptake rate (annual uptake probability) in the overall population

• This is equivalent to assuming

p(y | θ, n) =

(

n

y

)

θy(1− θ)(n−y) ∝ θy(1 − θ)(n−y)

• The objective of statistical inference is to find a way of “learning” about θ,
using

– The evidence (observed data, possibly also on some covariates X)
– The assumptions that we are making about the random phenomenon under

study

• Some times we are interested in prediction (e.g. for a yet unobserved unit)
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Schools of inference

There are 3 major schools of inference; those taught in basic stats courses are:
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Schools of inference

There are 3 major schools of inference; those taught in basic stats courses are:

• Frequentist (Neyman-Pearson)

– The frequentist school does not attempt to make inference for a specific set of
data, but rather it considers and evaluates inference procedures (like the way
in which an estimator is defined)

– Inference consists in the probabilistic assessment of the properties of the
procedure (ie unbiasedness, robustness, etc)
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Schools of inference

There are 3 major schools of inference; those taught in basic stats courses are:

• Frequentist (Neyman-Pearson)

– The frequentist school does not attempt to make inference for a specific set of
data, but rather it considers and evaluates inference procedures (like the way
in which an estimator is defined)

– Inference consists in the probabilistic assessment of the properties of the
procedure (ie unbiasedness, robustness, etc)

• Likelihood (Fisher)

– The likelihood school maintains that inference from the data at hand is
completely determined by the likelihood function, that is the statistical model
that we use to describe the problem, but as a mathematical function of the
parameters

– For example, the Maximum Likelihood Estimator (MLE) is the value of θ that
maximises L(θ | y) = p(y | θ)
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Schools of inference

There are 3 major schools of inference; those taught in basic stats courses are:

• Frequentist (Neyman-Pearson)

– The frequentist school does not attempt to make inference for a specific set of
data, but rather it considers and evaluates inference procedures (like the way
in which an estimator is defined)

– Inference consists in the probabilistic assessment of the properties of the
procedure (ie unbiasedness, robustness, etc)

• Likelihood (Fisher)

– The likelihood school maintains that inference from the data at hand is
completely determined by the likelihood function, that is the statistical model
that we use to describe the problem, but as a mathematical function of the
parameters

– For example, the Maximum Likelihood Estimator (MLE) is the value of θ that
maximises L(θ | y) = p(y | θ)

Often, these two schools are presented as a combined and unified theory, although
they are actually separated, and, to some scholars, irreconcilable!
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Example

• Consider again the cancer screening example and focus on y, the total
number of kits returned out of the n sent out, and suppose in our data we
observe n = 32 and y = 18
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Example

• Consider again the cancer screening example and focus on y, the total
number of kits returned out of the n sent out, and suppose in our data we
observe n = 32 and y = 18

• If we use a standard analysis, inference is generally performed using the MLE,
which in this case is

θ̂ =
y

n
=

18

32
= 0.5625

with standard error

se(θ̂) =

√

θ̂(1 − θ̂)

n
=

√

0.5625× 0.4375

32
= 0.0877

and 95% CI

θ̂ ± 1.96× se(θ̂) = 0.5625± 1.96× 0.0877 = [0.3096; 0.7344]
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Example

• Consider again the cancer screening example and focus on y, the total
number of kits returned out of the n sent out, and suppose in our data we
observe n = 32 and y = 18

• If we use a standard analysis, inference is generally performed using the MLE,
which in this case is

θ̂ =
y

n
=

18

32
= 0.5625

with standard error

se(θ̂) =

√

θ̂(1 − θ̂)

n
=

√

0.5625× 0.4375

32
= 0.0877

and 95% CI

θ̂ ± 1.96× se(θ̂) = 0.5625± 1.96× 0.0877 = [0.3096; 0.7344]

• NB: The MLE has all good frequentist properties!
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Likelihood function & MLE
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Normalised likelihood

θ̂ = maxL(θ | y) →

θ

• Since

p(y | θ) =
(n

y

)

θy(1−θ)(n−y)

the likelihood function is

L(θ | y) = θ18(1−θ)(32−18)

• As is easy to see, the

point θ̂ is the one
associated with the
maximum value of the
likelihood

• Therefore, we deem it the
“most likely”, or the
“most supported” by the
observed data
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Comments

• In both the frequentist and the likelihood approaches to inference, the
parameters are considered as fixed and unknown quantities

• In other words, the only form of uncertainty (and the very reason why we
need statistics) is the individual (sampling) variability
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Comments

• In both the frequentist and the likelihood approaches to inference, the
parameters are considered as fixed and unknown quantities

• In other words, the only form of uncertainty (and the very reason why we
need statistics) is the individual (sampling) variability

• We are not entitled to make probabilistic statements on the value of the
parameters (as they do not possess a probability distribution!)

• Accordingly, the 95% interval is interpreted as the procedure such that if
applied to many (identical) replications of the same study/experiment would
include the “true” value of θ in 95% of the cases
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Bayesian inference

Subjective probability as the unique measure of uncertainty

• Every single uncertain events is associated with a probability, which
represents the experimenter’s degree of belief in its realisation — this does
not necessarily coincide with the frequency with which the event is observed

• Each individual is entitled to their own, subjective evaluation. According to
the evidence that becomes sequentially available, individuals tend to update
their belief

• The probability of a given event also depends on the individual whose

uncertainty is expressed and on the information background behind the

evaluation. Upon varying these quantities, so does the measure of probability

• Consequently, there is no need for the assumption of the existence of a
unique, “true” (yet unknown) value for the probability of an event
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Bayesian inference

Subjective probability as the unique measure of uncertainty

• Every single uncertain events is associated with a probability, which
represents the experimenter’s degree of belief in its realisation — this does
not necessarily coincide with the frequency with which the event is observed

• Each individual is entitled to their own, subjective evaluation. According to
the evidence that becomes sequentially available, individuals tend to update
their belief

• The probability of a given event also depends on the individual whose

uncertainty is expressed and on the information background behind the

evaluation. Upon varying these quantities, so does the measure of probability

• Consequently, there is no need for the assumption of the existence of a
unique, “true” (yet unknown) value for the probability of an event

• The Bayesian philosophy does not deny the usefulness of frequencies and the
fact that parameters may be “fixed and unknown”, physical quantities. But
these concepts are just not essential!
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Where did it all start?

Reverend Thomas Bayes (1702 - 1761)

In modern language: given r ∼ Binomial(θ, n), find Pr(θ1 ≤ θ ≤ θ2 | r, n)

Some historical references:
http://www.bayesian.org/resources/bayes.html

S. Bertsch McGrayne (2011). The Theory That Would Not Die
S. Fienberg (206). When did Bayesian inference become Bayesian?
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Bayesian inference (cont’d)

Prior
(subjective
knowledge)

p(θ)
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Bayesian inference (cont’d)

Data
(observed
evidence)

Prior
(subjective
knowledge)

p(y | θ) p(θ)
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Bayesian inference (cont’d)

Data
(observed
evidence)

Prior
(subjective
knowledge)

Bayes
theorem

p(y | θ) p(θ)

p(θ)p(y | θ)

p(y)
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Bayesian inference (cont’d)

Data
(observed
evidence)

Prior
(subjective
knowledge)

Bayes
theorem

Posterior
(updated
knowledge)

p(y | θ) p(θ)

p(θ)p(y | θ)

p(y)

p(θ | y) =
p(θ)p(y | θ)

p(y)

∝ p(θ)L(θ | y)
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Bayesian inference — updating knowledge

θ

0.0 0.2 0.4 0.6 0.8 1.0

Prior
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Bayesian inference — updating knowledge

θ

0.0 0.2 0.4 0.6 0.8 1.0

Prior
Likelihood
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Bayesian inference — updating knowledge

θ

0.0 0.2 0.4 0.6 0.8 1.0

Prior
Likelihood
Posterior
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Deductive vs inductive inference

Deduction Hypothesis 1 Hypothesis 2 Hypothesis 3 c

∆ = 0% ∆ = 5% ∆ = 10%

c −5% 0% 5% 10% 15% Induction

• Standard (frequentist) procedures fix the working hypotheses and, by
deduction, make inference on the observed data:

– If my hypothesis is true, what is the probability of randomly selecting the data
that I actually observed? If small, then deduce weak support of the evidence
to the hypothesis
Assess Pr(Observed data | Hypothesis)
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Deductive vs inductive inference

0

0.05

0.1
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0.35

0.4

yobs

p(y | H0)

Fisher’s interpretation of
p-value P (grey area):

• If P < 0.01 ⇒ strong
evidence against H0

• If 0.01 < P < 0.05 ⇒
fairly strong evidence
against H0

• If P > 0.05 ⇒ little or
no evidence against H0
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Deductive vs inductive inference

Deduction Hypothesis 1 Hypothesis 2 Hypothesis 3 c

∆ = 0% ∆ = 5% ∆ = 10%

c −5% 0% 5% 10% 15% Induction

• On the contrary, the Bayesian philosophy proceeds fixing the value of the
observed data and, by induction, makes inference on unobservable
hypotheses

– What is the probability of my hypothesis, given the data I observed? If less
than the probability of other competing hypotheses, then weak support of the
evidence to the hypothesis
Assess Pr(Hypothesis | Observed data)
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Bayesian inference (cont’d)

The Bayesian procedure allows a straightforward sequential update of the
evidence
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Bayesian inference (cont’d)

The Bayesian procedure allows a straightforward sequential update of the
evidence

• Define a prior distribution on θ: p(θ)
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Bayesian inference (cont’d)

The Bayesian procedure allows a straightforward sequential update of the
evidence

• Define a prior distribution on θ: p(θ)

• Observe the available data y and update the uncertainty about the parameter
into the posterior distribution: p(θ | y)
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Bayesian inference (cont’d)

The Bayesian procedure allows a straightforward sequential update of the
evidence

• Define a prior distribution on θ: p(θ)

• Observe the available data y and update the uncertainty about the parameter
into the posterior distribution: p(θ | y)

• If further (“similar”) evidence z is made available, it is possible to integrate it
in the updating process, using the posterior distribution given y as the new
prior:

p(θ | y, z) =
p(z | θ, y)p(θ | y)

p(z | y)
∝ p(z | θ, y)p(θ | y)

“Today’s posterior is tomorrow’s prior”
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Bayesian analysis — Example

• In this situation, our prior
knowledge on θ can be
encoded in the probability
distribution

θ =

{

0.9 with probability 0.2
0.3 with probability 0.8

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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Example (cont’d)

• Suppose we see n = 10 patients and a total of y = 7 of them are alive at 1 week

• Assuming again a Binomial model for the number of “successes”, we then have:
Model for the observed data: p(y | θ) ∝ θy(1− θ)(n−y)

Prior distribution: p(θ = 0.9) = 0.2, p(θ = 0.3) = 0.8
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Example (cont’d)

• Suppose we see n = 10 patients and a total of y = 7 of them are alive at 1 week

• Assuming again a Binomial model for the number of “successes”, we then have:
Model for the observed data: p(y | θ) ∝ θy(1− θ)(n−y)

Prior distribution: p(θ = 0.9) = 0.2, p(θ = 0.3) = 0.8

• The likelihood for the two possible values of θ is then
L(θ = 0.9 | y = 7, n = 10) = 0.97 × 0.13 = 0.00047;
L(θ = 0.3 | y = 7, n = 10) = 0.37 × 0.73 = 0.00007
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Example (cont’d)

• Suppose we see n = 10 patients and a total of y = 7 of them are alive at 1 week

• Assuming again a Binomial model for the number of “successes”, we then have:
Model for the observed data: p(y | θ) ∝ θy(1− θ)(n−y)

Prior distribution: p(θ = 0.9) = 0.2, p(θ = 0.3) = 0.8

• The likelihood for the two possible values of θ is then
L(θ = 0.9 | y = 7, n = 10) = 0.97 × 0.13 = 0.00047;
L(θ = 0.3 | y = 7, n = 10) = 0.37 × 0.73 = 0.00007

• Finally, combining the likelihood with the prior we get the posterior distribution

p(θ = 0.9 | y = 7, n = 10) =

L(θ=0.9|y)

0.00047 ×
p(θ=0.9)

0.2

( 0.00047
L(θ=0.9|y)

× 0.2
p(θ=0.9)

) + ( 0.00007
L(θ=0.3|y)

× 0.8
p(θ=0.3)

)
= 0.626

p(θ = 0.3 | y = 7, n = 10) =

L(θ=0.3|y)

0.00007 ×
p(θ=0.3)

0.8

( 0.00047
L(θ=0.9|y)

× 0.2
p(θ=0.9)

) + ( 0.00007
L(θ=0.3|y)

× 0.8
p(θ=0.3)

)
= 0.374

(where the denominator is p(y), the product of likelihood and prior, summed over
all possible values of θ)
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Choice of the prior distribution

• Non-informative prior

– Attempts to include minimal information in the prior to “let the data speak for
themselves” (sometimes known as “minimally informative”)

– Need to be careful in defining the scale in which non-informativeness is selected
– Sometimes helpful as preliminary approximation — often leads to essentially

the same inference as using maximum likelihood

• Conjugate prior

– Convenient mathematical formulation
– Prior and posterior in the same family
– E.g. Prior = Normal(m0, s0) + Data = Normal(µ, σ2) ⇒
– E.g. Posterior = Normal(m1, s1)
– Can formally express (subjective) knowledge and include prior information

• Non-conjugated prior
– Overcome limitations of conjugate priors, i.e.

• Too restrictive
• Not available for widely used models (e.g. logistic regression)

– More difficult to handle computationally, so needs to resort to simulation-based
methods (e.g. MCMC) or clever approximations (e.g. INLA/ABC)
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“Non informative” priors

• “Ignorance” on θ should imply ignorance on any function of θ. Unfortunately, non
informative prior distributions are sensitive to changes of scale

• For example, suppose we consider θ, the log-odds ratio in a logistic regression
model, and assume p(θ) = k. Typically, we are interested in the transformation
φ = exp(θ), that represents the odds ratio on the natural scale
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“Non informative” priors

• “Ignorance” on θ should imply ignorance on any function of θ. Unfortunately, non
informative prior distributions are sensitive to changes of scale

• For example, suppose we consider θ, the log-odds ratio in a logistic regression
model, and assume p(θ) = k. Typically, we are interested in the transformation
φ = exp(θ), that represents the odds ratio on the natural scale

Assumed prior for θ

θ

p(
θ)

−3 −2 −1 0 1 2 3
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“Non informative” priors

• “Ignorance” on θ should imply ignorance on any function of θ. Unfortunately, non
informative prior distributions are sensitive to changes of scale

• For example, suppose we consider θ, the log-odds ratio in a logistic regression
model, and assume p(θ) = k. Typically, we are interested in the transformation
φ = exp(θ), that represents the odds ratio on the natural scale

Assumed prior for θ

θ

p(
θ)

−3 −2 −1 0 1 2 3

Induced prior for φ

φ

p(
φ)
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“Non informative” priors

• “Ignorance” on θ should imply ignorance on any function of θ. Unfortunately, non
informative prior distributions are sensitive to changes of scale

• For example, suppose we consider θ, the log-odds ratio in a logistic regression
model, and assume p(θ) = k. Typically, we are interested in the transformation
φ = exp(θ), that represents the odds ratio on the natural scale

Assumed prior for θ

θ

p(
θ)

−3 −2 −1 0 1 2 3

Induced prior for φ

φ

p(
φ)

0 5 10 15 20

• The assumed prior ignorance on θ turns out to be extremely informative on φ. So
what formulation should one use?
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Choice of the prior distribution

• Non-informative prior

– Attempts to include minimal information in the prior to “let the data speak for
themselves” (sometimes known as “minimally informative”)

– Need to be careful in defining the scale in which non-informativeness is selected
– Sometimes helpful as preliminary approximation — often leads to essentially

the same inference as using maximum likelihood

• Conjugate prior

– Convenient mathematical formulation
– Prior and posterior in the same family

E.g. Prior = Normal(m0, s0) + Data = Normal(µ, σ2) ⇒
E.g. Posterior = Normal(m1, s1)

– Can formally include prior information in the definition

• Non-conjugated prior
– Overcome limitations of conjugate priors, i.e.

• Too restrictive
• Not available for widely used models (e.g. logistic regression)

– More difficult to handle computationally, so needs to resort to simulation-based
methods (e.g. MCMC) or clever approximations (e.g. INLA/ABC)
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“Informative” conjugate prior

• Consider again the cancer screening example

y | θ, n ∼ Binomial(θ, n)

and suppose further that (for instance from previous similar studies) we know
that the probability that a patient returns their kit has been estimated
between 20 and 60%, a condition that we can represent by assuming

– mean(θ) = 0.4
– sd(θ) = 0.1
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“Informative” conjugate prior

• Consider again the cancer screening example

y | θ, n ∼ Binomial(θ, n)

and suppose further that (for instance from previous similar studies) we know
that the probability that a patient returns their kit has been estimated
between 20 and 60%, a condition that we can represent by assuming

– mean(θ) = 0.4
– sd(θ) = 0.1

• We can encode this information into a suitable prior distribution. One
possibility is to model the prior using a Beta distribution

θ | α, β ∼ Beta(α, β)

(the values α and β are called hyper-parameters. Upon varying them, we
obtain different forms for the prior)
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“Informative” conjugate prior (cont’d)

0.0 0.2 0.4 0.6 0.8 1.0

(Informative) prior distribution p(θ | α = 9.2, β = 13.8)
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“Informative” conjugate prior (cont’d)

0.0 0.2 0.4 0.6 0.8 1.0

mean(θ) = 0.4

sd(θ) = 0.1

Pr(0.20 < θ < 0.60) = 0.95

(Informative) prior distribution p(θ | α = 9.2, β = 13.8)
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Prior information vs prior distribution

• NB: Using a Beta distribution is only one possibility! There are different
ways of encoding the prior knowledge

– For example, we could model ψ = logit(θ) ∼ Normal(−0.41, 0.43), which
effectively implies the same prior information!

0.0 0.2 0.4 0.6 0.8 1.0

Normal (on logit scale)
Beta(9.2,13.8)
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“Informative” conjugate prior (cont’d)

• Apart from being extremely versatile, the Beta distribution is also conjugated
for the Binomial model

• Consequently,

θ | α, β ∼ Beta(α, β) = Beta(9.2, 13.8)
y | θ ∼ Binomial(θ, n)

then θ | y ∼ Beta(α∗, β∗)

where

– α∗ = (α+ y),
– β∗ = (n+ β − y)
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“Informative” conjugate prior (cont’d)

• Apart from being extremely versatile, the Beta distribution is also conjugated
for the Binomial model

• Consequently,

θ | α, β ∼ Beta(α, β) = Beta(9.2, 13.8)
y | θ ∼ Binomial(θ, n)

then θ | y ∼ Beta(α∗, β∗)

where

– α∗ = (α+ y),
– β∗ = (n+ β − y)

• If we observe that n = 32 kits are sent out and y = 18 are returned, the
posterior distribution then becomes Beta(α∗, β∗) = Beta(27.2, 27.8)

• NB: Since the distributional form is known, it is easy to characterise the
posterior (i.e. compute mean, sd, ...)
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“Informative” conjugate prior (cont’d)

0.0 0.2 0.4 0.6 0.8 1.0

Prior
Posterior

mean(θ | y) = 0.4944

sd(θ | y) = 0.0668

95% CI:[0.3638; 0.6246]

Posterior distribution p(θ | y)
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Bayesian vs “standard” inference

“Standard” analysis

• MLE θ̂ = y
n
= 18

32 = 0.5625

• Standard error = se(θ̂) =

√

θ̂(1−θ̂)
n

=
√

0.5625×0.4375
32 = 0.0877

• 95% confidence interval:
θ̂ ± 1.96× se(θ̂) = 0.5625± 1.96× 0.0877 = [0.3096− 0.7344]
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32 = 0.5625

• Standard error = se(θ̂) =

√

θ̂(1−θ̂)
n

=
√

0.5625×0.4375
32 = 0.0877

• 95% confidence interval:
θ̂ ± 1.96× se(θ̂) = 0.5625± 1.96× 0.0877 = [0.3096− 0.7344]

Bayesian analysis

• Prior mean for θ = 0.4;
prior 95% “credibility” interval = [0.2− 0.6]

• Posterior mean for θ = 0.4944;
posterior 95% “credibility” interval = [0.3638− 0.6246]
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Bayesian vs “standard” inference

“Standard” analysis

• MLE θ̂ = y
n
= 18

32 = 0.5625

• Standard error = se(θ̂) =

√

θ̂(1−θ̂)
n

=
√

0.5625×0.4375
32 = 0.0877

• 95% confidence interval:
θ̂ ± 1.96× se(θ̂) = 0.5625± 1.96× 0.0877 = [0.3096− 0.7344]

Bayesian analysis

• Prior mean for θ = 0.4;
prior 95% “credibility” interval = [0.2− 0.6]

• Posterior mean for θ = 0.4944;
posterior 95% “credibility” interval = [0.3638− 0.6246]

The standard results are different from the Bayesian estimates, because they do
not take into account the existing information about the value of the parameter,
coming from previous studies
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Choice of the prior distribution

• Non-informative prior

– Attempts to include minimal information in the prior to “let the data speak for
themselves” (sometimes known as “minimally informative”)

– Need to be careful in defining the scale in which non-informativeness is selected
– Sometimes helpful as preliminary approximation — often leads to essentially

the same inference as using maximum likelihood

• Conjugate prior

– Convenient mathematical formulation
– Prior and posterior in the same family

E.g. Prior = Normal(m0, s0) + Data = Normal(µ, σ2) ⇒
E.g. Posterior = Normal(m1, s1)

• Non-conjugated prior
– Overcome limitations of conjugate priors, i.e.

• Too restrictive
• Not available for widely used models (e.g. logistic regression)

– More difficult to handle computationally, so needs to resort to simulation-based
methods (e.g. MCMC) or clever approximations (e.g. INLA/ABC)
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Example — multiple regression

• Consider a problem where

– yi is a scalar reference measurement, e.g. of a protein
– xi = (x1i, . . . , xpi) is a vector with spectral data, e.g. scores on PCs or PLS

factors
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• Consider a problem where

– yi is a scalar reference measurement, e.g. of a protein
– xi = (x1i, . . . , xpi) is a vector with spectral data, e.g. scores on PCs or PLS

factors

• Typically, we observe a training dataset TD = (y,x) with n cases and we
want to use that to predict yn+1 for a new case with a given spectrum xn+1
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• Consider a problem where

– yi is a scalar reference measurement, e.g. of a protein
– xi = (x1i, . . . , xpi) is a vector with spectral data, e.g. scores on PCs or PLS

factors

• Typically, we observe a training dataset TD = (y,x) with n cases and we
want to use that to predict yn+1 for a new case with a given spectrum xn+1

• The standard approach is to regress y on x for the TD:

1 Fit the model y = xβ + e, e.g. by least squares
2 Get an estimate b = (b1, . . . , bp) of β = (β1, . . . , βp)
3 predict yn+1 by xn+1b
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Example — multiple regression

• Consider a problem where

– yi is a scalar reference measurement, e.g. of a protein
– xi = (x1i, . . . , xpi) is a vector with spectral data, e.g. scores on PCs or PLS

factors

• Typically, we observe a training dataset TD = (y,x) with n cases and we
want to use that to predict yn+1 for a new case with a given spectrum xn+1

• The standard approach is to regress y on x for the TD:

1 Fit the model y = xβ + e, e.g. by least squares
2 Get an estimate b = (b1, . . . , bp) of β = (β1, . . . , βp)
3 predict yn+1 by xn+1b

• NB: This model can be considered as a “special case” of a wider class of
Bayesian specifications
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Exchangeability and prediction

p(θ | y) θ

y y∗ p(y∗ | y) =

∫

p(y∗ | θ)p(θ | y)dθ

• The assumption of exchangeability implies that yn+1 | xn+1 has the same
distribution as y | x for the TD

• In other words, we regard the n+ 1-th observation as “similar” to (or, in
statistical parlance, exchangeable with) the n previously observed
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Example — multiple regression (cont’d)

• In the Bayesian version of this model, we need to specify a prior distribution
for the parameters

• We can obtain the same results as the frequentist version by assuming very
vague information on each regression coefficient, e.g.

βj
iid
∼ Uniform(−∞,∞), which implies p(βj) = k for j = 1, . . . , p
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Example — multiple regression (cont’d)

• In the Bayesian version of this model, we need to specify a prior distribution
for the parameters

• We can obtain the same results as the frequentist version by assuming very
vague information on each regression coefficient, e.g.

βj
iid
∼ Uniform(−∞,∞), which implies p(βj) = k for j = 1, . . . , p

• Applying Bayes theorem we can compute the posterior distribution as

p(β | y,x) =
p(y | β,x)p(β)

p(y)

∝
k × p(y | β,x)

∫

k × p(y | β,x)dβ

=
p(y | β,x)

∫

p(y | β,x)dβ
=

L(β | TD)
∫

L(β | TD)dβ

which is just the (normalised) likelihood

• Consequently, the mean of the posterior is identical with the maximum

likelihood estimator
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Example — multiple regression (cont’d)

• Assuming exchangeability between the TD and the new observation, we can
obtain the posterior predictive distribution

p(yn+1 | xn+1,TD) =

∫

p(yn+1 | β,xn+1)p(β | TD)dβ

• Under the assumptions specified in this case, the mean of the predictive

distribution is xn+1b, which is equivalent to the maximum likelihood

estimation
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Example — multiple regression (cont’d)

• Assuming exchangeability between the TD and the new observation, we can
obtain the posterior predictive distribution

p(yn+1 | xn+1,TD) =

∫

p(yn+1 | β,xn+1)p(β | TD)dβ

• Under the assumptions specified in this case, the mean of the predictive

distribution is xn+1b, which is equivalent to the maximum likelihood

estimation

• In this sense, the ML analysis is a special case of the general Bayesian
procedure

• But of course there is no reason why we have to use the “minimally
informative”, vague Uniform prior on β!
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Example — multiple regression (cont’d)

• Technically, the Uniform prior on the entire (−∞,∞) scale is improper

– This means that it does not integrate to 1
– Consequently, it is not a “proper” probability distribution, which means we

cannot give it a clear qualitative meaning
– To encode poor information on β, we can use a proper distribution centered

on 0 and with large variance, e.g. βj
iid
∼ Normal(0, 100000)
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Example — multiple regression (cont’d)

• Technically, the Uniform prior on the entire (−∞,∞) scale is improper

– This means that it does not integrate to 1
– Consequently, it is not a “proper” probability distribution, which means we

cannot give it a clear qualitative meaning
– To encode poor information on β, we can use a proper distribution centered

on 0 and with large variance, e.g. βj
iid
∼ Normal(0, 100000)

• In addition, we are artificially discarding any prior information/knowledge we
may have on the expected impact of x on y

– The Uniform prior assumes that any possible value for β is equally likely — but
we may have some ideas on the likely magnitude of the effect, or even its sign
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Example — multiple regression (cont’d)

• Technically, the Uniform prior on the entire (−∞,∞) scale is improper

– This means that it does not integrate to 1
– Consequently, it is not a “proper” probability distribution, which means we

cannot give it a clear qualitative meaning
– To encode poor information on β, we can use a proper distribution centered

on 0 and with large variance, e.g. βj
iid
∼ Normal(0, 100000)

• In addition, we are artificially discarding any prior information/knowledge we
may have on the expected impact of x on y

– The Uniform prior assumes that any possible value for β is equally likely — but
we may have some ideas on the likely magnitude of the effect, or even its sign

• Even if in the minimally informative case the numbers may be the same, the
qualitative interpretation is quite different

– Under the Bayesian approach, we are entitled to compute probabilistic
assessments on both the posterior and the predictive distributions, e.g.
p(β | TD) > 0, or p(yn+1 | xn+1,TD) > c for some specified threshold c
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Impact of the prior distribution

Subject 1: mean1(θ) = 0.05, sd1(θ) = 0.01 ⇒ p1(θ) ∼ Beta(α1, β1)
= Beta(3.5, 31.5)

Subject 2: mean2(θ) = 0.60, sd2(θ) = 0.10 ⇒ p2(θ) ∼ Beta(α2, β2)
= Beta(13.8, 9.2)

0.0 0.2 0.4 0.6 0.8 1.0
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Impact of the prior distribution

Subject 1: mean1(θ) = 0.05, sd1(θ) = 0.01 ⇒ p1(θ) ∼ Beta(α1, β1)
= Beta(3.5, 31.5)

Subject 2: mean2(θ) = 0.60, sd2(θ) = 0.10 ⇒ p2(θ) ∼ Beta(α2, β2)
= Beta(13.8, 9.2)

0.0 0.2 0.4 0.6 0.8 1.0

p1(θ)

p2(θ)
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Impact of the prior distribution (2)

Suppose we observe y = 20 “successes” out of n = 21 trials

Subject 1: Subject 2:
p1(θ | y) ∼ Beta(α1 + y, β1 + n− y) p2(θ | y) ∼ Beta(α2 + y, β2 + n− y)

= Beta(23.5, 32.5) = Beta(33.8, 10.2)
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Impact of the prior distribution (2)

Suppose we observe y = 20 “successes” out of n = 21 trials

Subject 1: Subject 2:
p1(θ | y) ∼ Beta(α1 + y, β1 + n− y) p2(θ | y) ∼ Beta(α2 + y, β2 + n− y)

= Beta(23.5, 32.5) = Beta(33.8, 10.2)

0.0 0.2 0.4 0.6 0.8 1.0

mean1(θ | y) = 0.4196

sd1(θ | y) = 0.0654

mean2(θ | y) = 0.7682

sd2(θ | y) = 0.0629
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Impact of the prior distribution (3)

Now suppose we observe y = 200 “successes” out of n = 201 trials

Subject 1: Subject 2:
p1(θ | y) ∼ Beta(α1 + y, β1 + n− y) p2(θ | y) ∼ Beta(α2 + y, β2 + n− y)

= Beta(203.5, 32.5) = Beta(213.8, 10.2)

Gianluca Baio ( UCL) Bayesian Cookies 28th ACS, 7 Nov 2013 35 / 38



Impact of the prior distribution (3)

Now suppose we observe y = 200 “successes” out of n = 201 trials

Subject 1: Subject 2:
p1(θ | y) ∼ Beta(α1 + y, β1 + n− y) p2(θ | y) ∼ Beta(α2 + y, β2 + n− y)

= Beta(203.5, 32.5) = Beta(213.8, 10.2)

0.0 0.2 0.4 0.6 0.8 1.0

mean1(θ | y) = 0.8623

sd1(θ | y) = 0.0224

mean2(θ | y) = 0.9545

sd2(θ | y) = 0.0139

The two prior opinions tend to
converge to a common value
“dominated” by the evidence
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Conclusions

• Bayesian methods allow the formal and explicit incorporation of knowledge
about the specific subject matter

• They are logically sound and directly address the relevant scientific questions
of inference

• Particularly good to represent decision problems

Gianluca Baio ( UCL) Bayesian Cookies 28th ACS, 7 Nov 2013 36 / 38



Conclusions

• Bayesian methods allow the formal and explicit incorporation of knowledge
about the specific subject matter

• They are logically sound and directly address the relevant scientific questions
of inference

• Particularly good to represent decision problems

• Increasingly used in many applications

– Great improvements from the computational point of view
– Basically can model any problem, allowiung flexibility in the representation of

the phenomenon under study

• Defining the prior distribution is indeed a complex matter — but it is doable!

– Very close collaboration between statisticians and practitioners
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