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How to make your life miserable to (eventually) have a better life...

1. EVPPI as a regression problem — but faster
2. Spatial structure + reduction dimensionality
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Health economic evaluation — What is it?

• Objective: Combine costs & benefits of a given intervention into a rational
scheme for allocating resources

– Rational decision-making is effected through the comparison of expected
utilities ⇒ monetary net benefit

• Costs and benefits need to be modelled jointly

– Strong positive correlation — effective treatments are innovative and result
from intensive and lengthy research ⇒ are associated with higher unit costs

– Negative correlation — more effective treatments may reduce total care
pathway costs e.g. by reducing hospitalisations, side effects, etc.

• Often needs to go “beyond RCTs”

– Comparator(s) in the trial may not reflect standard of care
– Limited follow up /small sample size / poor external validity

• Uses “decision-analytic” models instead

– Describe full care management pathway
– Can combine individual- and aggregate level data
– Models include many relevant parameters
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Decision-analytic model — HIV test (Welton et al 2012) [9]

t = 0: Targeted testing (high risk groups only)

Risk group? HIV infection? Already diagnosed? (Benefit, Costs)
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Parameters: θ = (a, b, c, d, e, f, g, h)

Utility: NB0(θ) = [ac(1−f) + bd(1−g)]B − [a(1−cf) + b(1−dg)]C
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Decision-analytic model — HIV test (Welton et al 2012) [9]

t = 1: Universal testing

Risk group? HIV infection? Already diagnosed? (Benefit, Costs)
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Parameters: θ = (a, b, c, d, e, f, g, h)

Utility: NB1(θ) = [ac(1−f) + bd(1−g) + (1−a−b)e(1−h)]B − [a(1−cf) + b(1−dg) + (1−a−b)(1−eh)]C
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Health economic evaluation — How does it work?

Parameters simulations Expected utility Maximum Opportunity
Iter/n a b . . . h NB0(θ) NB1(θ) net benefit loss

1 0.365 0.076 . . . 0.162 19 214 751 19 647 706 19 647 706 —

2 0.421 0.024 . . . 0.134 17 165 526 17 163 407 17 165 526 2 119.3

3 0.125 0.017 . . . 0.149 18 710 928 16 458 433 18 710 928 2 252 495.5

4 0.117 0.073 . . . 0.120 16 991 321 18 497 648 18 497 648 —

5 0.481 0.008 . . . 0.191 19 772 898 18 662 329 19 772 898 1 110 569.3

6 0.163 0.127 . . . 0.004 17 106 136 18 983 331 18 983 331 —

. . . . . . . . . . . .

1000 0.354 0.067 . . . 0.117 18 043 921 16 470 805 18 043 921 1 573 116.0

Average 18 659 238 19 515 004 19 741 589 226 585

• Characterise uncertainty in the model parameters

– In a full Bayesian setting, these are draws from the joint posterior
distribution of θ

– In a frequentist setting, these are typically Monte Carlo draws from a set of
univariate distributions that describe some level of uncertainty around MLEs
(two-step/hybrid)
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• Uncertainty in the parameters induces a distribution of decisions (based on
the net benefits)

– In each parameters configuration can identify the optimal strategy

• Averaging over the uncertainty in θ provides the overall optimal decision,
given current uncertainty (= choose the intervention associated with highest
expected utility)
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• Summarise uncertainty in the decision, eg via the Expected Value of
“Perfect” Information (EVPI)

– Defined as the average Opportunity Loss
– Can also be computed as the difference between the average maximum

expected utility under “perfect” information and the maximum expected
utility overall — in formula:

EVPI = Eθ
[
max

t
NBt(θ)

]
−max

t
Eθ [NBt(θ)]
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Expected Value of Partial Information

• θ = all the model parameters; can be split into two subsets

– The “parameters of interest” φ, e.g. prevalence of a disease, HRQL
measures, length of stay in hospital, ...

– The “remaining parameters” ψ, e.g. cost of treatment with other established
medications,

• We are interested in quantifying the value of gaining more information on φ,
while leaving the current level of uncertainty on ψ unchanged

• In formulæ:

– First, consider the expected utility (EU) if we were able to learn φ but not ψ
– If we knew φ perfectly, best decision = the maximum of this EU
– Of course we cannot learn φ perfectly, so take the expected value
– And compare this with the maximum expected utility overall
– This is the EVPPI!

EVPPI = Eφ
[
max

t
Eψ|φ [NBt(θ)]

]
−max

t
Eθ [NBt(θ)]

– That’s the difficult part! Can do nested Monte Carlo, but takes for ever to get
accurate results, so nobody bothers...
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EVPPI as a regression problem

• Can model as a regression problem

NBt(θ) = Eψ|φ [NBt(θ)] + ε, with ε ∼ Normal(0, σ2
ε)

= gt(φ) + ε

“Data”: simulations for NBt(θ) as “response”
• “Data”: simulations for φ as “covariates”

a b c . . . f g h NB0(θ) NB1(θ)

0.365 0.076 0.243 . . . 0.622 0.001 0.162 19 214 751 19 647 706

0.421 0.024 0.115 . . . 0.519 0.010 0.134 17 165 526 17 163 407

0.125 0.017 0.420 . . . 0.482 0.007 0.149 18 710 928 16 458 433

0.117 0.073 0.419 . . . 0.317 0.003 0.120 16 991 321 18 497 648

0.481 0.008 0.176 . . . 0.497 0.004 0.191 19 772 898 18 662 329

0.163 0.127 0.227 . . . 0.613 0.083 0.004 17 106 136 18 983 331

. . . . . . . . . . . .

0.354 0.067 0.318 . . . 0.519 0.063 0.117 18 043 921 16 470 805

“covariates” “response” “response”

Strong and Oakley (2014) [7]
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ĝt(φs)

Strong and Oakley (2014) [7]
G Baio (UCL) Efficient computation for the EVPPI LGM 2016, 14 Sept 2016 7 / 19



EVPPI as a regression problem

• Can model as a regression problem

NBt(θ) = Eψ|φ [NBt(θ)] + ε, with ε ∼ Normal(0, σ2
ε)

= gt(φ) + ε

“Data”: simulations for NBt(θ) as “response”
• “Data”: simulations for φ as “covariates”

• Once the functions gt(φ) are estimated, then can approximate

EVPPI = Eφ
[
max
t

Eψ|φ [NBt(θ)]
]
−max

t
Eθ [NBt(θ)]

≈ 1

S

S∑
s=1

max
t
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• NB: gt(φ) can be complex, so need to use flexible regression methods

– GAMs are very fast, but only work if number of important parameters P ≤ 5
– If P > 5, can use Gaussian Process regression

Strong and Oakley (2014) [7]
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EVPPI via GP regression

Model 
NBt(θ1)
NBt(θ2)

...
NBt(θS)

 := NBt ∼ Normal(Hβ,CExp + σ2
εI)

H =


1 φ11 · · · φ1P
1 φ21 · · · φ2P
...

. . .

1 φS1 · · · φSP

 and CExp(r, s) = σ2 exp

[
P∑
p=1

(
φrp − φsp

δp

)2
]

• Parameters: β, δ, σ2, σ2
ε

• Very flexible structure — good approximation level

• Can use conjugate priors + numerical optimisation, but can still be very slow
— computational cost in the order of S3 (involves inversion of a dense
covariance matrix)

Strong and Oakley (2014) [7]
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EVPPI via GP regression — but faster

1 Build from ideas in spatial statistics and use a Matérn covariance function

CM(r, s) =
σ2

Γ(ν)2ν−1
(κ‖φr − φs‖)νKν(κ‖φr − φs‖)

– Fewer parameters, but still implies a dense covariance matrix
– But: can use efficient algorithms to solve Stochastic Partial Differential

Equations (SPDE) to approximate it — with computational cost ∝ S3/2!

2 Re-formulate the model as

NBt ∼ Normal(Hβ,CM + σ2
εI)

∼ Normal(Hβ + f(ω), σ2
εI)

– f(ω) are a set of “spatially structured” effects, with ω ∼ Normal
(
0,Q−1(ξ)

)
– Q(ξ) is a sparse precision matrix determined by the SPDE solution

3 Crucially, if we set a sparse Gaussian prior on β, this is a Latent Gaussian
model ⇒ can be estimated using super-fast Integrated Nested Laplace
Approximation (INLA)

Heath et al (2016) [3]
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Lost in space

• In a “proper” spatial problem, data are observed at a bivariate grid of points
– Points that are closer tend to be more correlated than points further apart
– The INLA-SPDE procedure builds a grid approximation of the underlying

bidimensional space
– Points not on the grid are estimated by interpolation — deriving a full surface
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• In a “proper” spatial problem, data are observed at a bivariate grid of points
– Points that are closer tend to be more correlated than points further apart
– The INLA-SPDE procedure builds a grid approximation of the underlying

bidimensional space
– Points not on the grid are estimated by interpolation — deriving a full surface

• In our case, data are observed on a high-dimensional space, with no proper
“spatial” interpretation!

• Need to use some form of dimensionality reduction to project the
P -dimensional space of φ to a 2-dimensional space

– Simple solution: use PCA to preserve Euclidean distances and thus capture the
“spatial” correlation across the elements of φ

– Even better, regression-based dimension reduction method: Principal Fitted
Components
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bidimensional space
– Points not on the grid are estimated by interpolation — deriving a full surface

• In our case, data are observed on a high-dimensional space, with no proper
“spatial” interpretation!

• Need to use some form of dimensionality reduction to project the
P -dimensional space of φ to a 2-dimensional space

– Simple solution: use PCA to preserve Euclidean distances and thus capture the
“spatial” correlation across the elements of φ

– Even better, regression-based dimension reduction method: Principal Fitted
Components

NB: All methods implemented in the R package BCEA (Bayesian Cost-Effectiveness
Analysis: http://www.statistica.it/gianluca/BCEA)a

aBaio et al (2016) [1]
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Principal Fitted Components

• Objective: find a sufficient dimensionality reduction

– Estimate the function R(φ) : P → d so that NBt ⊥⊥ φ | R(φ)
– “Project” the P−dimensional information contained in φ to the
d−dimensional function R(·)

– Ideally, d << P — in fact, would like d ≤ 2

• “Inverse regression” model

φ = µ+ Υf(NBt) + ε

with

– µ = intercept
– Υ = P × d dimensionality reduction matrix
– f(NBt) = vector-valued function of the “response”
– ε = error term

• Main advantages

– Computational cost is negligible
– Can use model-fitting statistics (eg AIC) to determine the “best” model for

given choices of d (= 2, 3, . . .)
– NB: if the AIC suggests d > 2 then EVPPI estimates likely to be biased!
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In a nutshell...

1 Make the model structure more complex, by assuming that the EVPPI is
estimated by a linear predictor (“fixed” effects) + a spatially structured
(“random” effect) component, accounting for the correlation among
parameters

2 Find the best performing inverse regression model by AIC (as a failsafe
measure) & compute the PFC model with 2 dimensions

3 Use the projections as the “spatial location” for the net benefit values and
estimate the Matérn GP via SPDE

4 Use INLA to estimate the posterior distribution for the model parameters

5 Compute the fitted values ĝt(φs)

6 Use the fitted values to calculate the estimate of the EVPPI as

ÊVPPI =
1

S

S∑
s=1

max
t
ĝt(φs)−max

t

1

S

S∑
s=1

ĝt(φs)
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Examples — SAVI

● ● ● ● ● ● ● ● ● ● ● ●

SAVI example
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Sheffield Accelerated Value of Information [6]
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Examples — Vaccine

● ● ● ● ● ● ● ● ● ● ● ●

Computational time
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Baio and Dawid (2011) [2]
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Breaking bad...

Breast cancer screening (Welton et al 2008) [8]

• Multi-decision model developed for the UK setting, with 4 interventions

• Complex evidence synthesis for 6 parameters — highly structured!
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The fix!

• Can relatively easily modify the basic structure of the model, e.g. include
interaction terms to make Hβ non-linear

β0 + β1φ1s + β2φ2s + β3φ3s + β4φ1sφ2s + β5φ1sφ3s + β6φ2sφ3s
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Conclusions

• VoI methods are theoretically valid (ideal?) to quantify decision uncertainty

– Directly related to research prioritisation
– Address the issue of uncertainty vs consequences

• But: their application has been hindered by the computational cost involved
in calculating the EVPPI

• Methods based on non-parametric regression to calculate the EVPPI are
efficient, but in some cases still computationally expensive

• Can overcome these limitations by drawing on methods from spatial statistics

– Efficient algorithm — around 10 seconds for 1000 PSA samples in the basic
formulation

– Relatively easy (and not too expensive!) to use more complex formulation to
deal with more complex cases

– Implemented in BCEA — practitioners can use them in a relatively
straightforward way!
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Thank you!
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