Integrated Nested Laplace Approximation R-INLA is an R package that implements Integrated Nested Laplace Approximation (INLA), a method to perform approximate Bayesian analysis for a wide class of model specifications, including hierarchical regression models and spatial or spatio-temporal models.
The idea underlying INLA is that, instead of performing computation for the posterior or predictive distributions using MCMC (which is generally very effective, but can be very computationally intensive, especially for complex models or very large datasets), in a specific class of models in which the prior distribution for the (vector of) parameter(s) is characterised by Gaussian Random Markov Fields, these tasks can be performed using approximations based on Laplace methods.