
SWSamp: Simulation-based sample size calculations

for a Stepped Wedge Trial (and more)

Gianluca Baio
University College London

Abstract

Sample size calculations are a fundamental part of experimental research. Often these
are based on closed-form approximations, which while extremely helpful and quick to
compute, can fail to accommodate for all the nuisances and specificity of some more
complex study designs. One such example is the Stepped Wedge Trial (SWT), which is
becoming increasingly popular. SWSamp is a package which aims at providing a means of
applying a simulation-based approach to sample size calculations, specifically for a SWT,
but with a view at rendering this process fully integrated with a wider range of data
generating processes.

Keywords: Sample size calculations, simulations, Stepped Wedge Design, R.

1. Introduction

Sample size calculations are one of the fundamental components in the design of experimental
studies and are mandatory in virtually all settings involving randomised trials, e.g. in medical
research. Sample size calculations aim at determining the smallest sample that is necessary
to observe, under a given design (e.g. distributional assumptions and expected characteristics
of the intervention(s) being assessed), in order to correctly determine the “signal” (e.g. the
“treatment effect”) as statistically significant and thus not due to chance.

Usually, sample size calculations are based on analytic formulæ, often relying on some sim-
plifying assumption, such as (asymptotic) Normality of the outcome. Once the significance
level (type I error or false positive rate, typically α = 0.05) and the type II error (false neg-
ative rate, typically β = 0.2) are set, a formula is obtained linking the “power” (1 − β) to
the expected effect, a measure of variability in the relevant population and the number of
observations, n. Solving the equation for n provides the required sample size. Notice that,
while slightly abusing the common notation, in order to avoid confusion we prefer to indicate
α as ‘sl’ and (1 − β) as ‘power’, in the rest of this paper. This allows us to use Greek letters
to indicate parameters in the models we consider.

The classic example of a sample size calculation based on an analytic formula is given by
the case of an outcome y ∼ Normal(µ + θt, σ2), where µ is a baseline level, t = 0, 1 is a
“treatment” indicator, θ is the alleged treatment effect and σ2 is the (pooled) population
variance, assumed common across the two groups of treatment. Under these assumptions,

2 SWSamp: Simulation-based sample size

the power is determined as

power = Φ

(√
nθ2

4σ2
− zsl/2

)
,

where Φ is the cumulative standard Normal distribution and zsl/2 is its (1−sl/2)−th quantile.
This can be solved for n to determine the optimal sample size

n =
2
(
zpower + z1−sl/2

)2
θ2

.

While extremely helpful in principle, sample size calculations based on closed-form analytic
solutions may suffer from some drawbacks. First, as a general point often the input parameters
(e.g. the expected treatment effect or the relevant population variance) are plugged in the
formula as point estimates. This does not account for any uncertainty in their “true” value,
which may lead to biased estimates of the required sample size. In addition, there may
be complex designs for which closed-form solutions do not exist or if they do, they rely on
asymptotic results or approximations, which may render their applicability less general.

One such case is perhaps represented by the Stepped Wedge (SW) design, a variant of cluster
randomised trials (CRTs) where all clusters receive the intervention in a randomised order —
the main difference between a SW trial (SWT) and a CRT is that in the former design all
groups eventually receive the intervention, while in a standard CRT the groups are randomly
assigned to either treatment groups (e.g. intervention or control).

Figure 1 shows a very basic example of as SWT, conducted with I = 6 clusters and for J = 3
active time points at which the units are randomised to switch permanently to the treatment
arm. In this case, all clusters would be measured at baseline, where all are in the control arm
— this could be considered as a preliminary step before the intervention is implemented at
all. Then, clusters 3 and 6 are randomised to switch to the active treatment at time point 1
and continue with this ever since. At time point 2, clusters 1 and 4 are also randomised to
treatment and at time point 3 the remaining clusters 2 and 5 join the treatment arm.

Information about the randomisation scheme is included in a design matrix X, in this case

X =



0 1 1 1
0 0 0 1
0 1 1 1
0 0 1 1
0 0 0 1
0 1 1 1

 .

There are several potential complications with the desing of SWTs, as systematically reviewed
and analysed for example by Hargreaves et al. (2015); Beard et al. (2015) and Copas et al.
(2015). These, however, are beyond the purpose of the current work and thus we do not
explore them further here, unless they are directly relevant.

1.1. Analytic sample size calculations for a SWT

Analytic formulæ for sample size calculations exist for specific SWTs. For example, Hussey
and Hughes (2007) considered a SW design with cross-sectional data assuming I clusters, J

Gianluca Baio 3

I = number of clusters: 6
J = number of time points: 3 (not including baseline)
H = number of units randomised at each time: 2

Baseline Time1 Time2 Time3
Cluster 1 0 0 1 1
Cluster 2 0 0 0 1
Cluster 3 0 1 1 1
Cluster 4 0 0 1 1
Cluster 5 0 0 0 1
Cluster 6 0 1 1 1

0 = control (no intervention, Treatment as Usual, ...)
1 = active intervention

Figure 1: A simple example of a Stepped Wedge design, showing the the clusters’ progression
over time to the treatment arm

crossover points and K individuals sampled per cluster at each time point. In the most basic
formulation, the observed continuous response is then modelled as Yijk = µij + eijk, where

µij = µ+ αi + βj +Xijθ (1)

is the cluster- and time-specific mean, while eijk ∼ Normal(0, σ2e) represent independent
individual-level error terms (within-cluster variability). Here, µ is the overall intercept, αi ∼
Normal(0, σ2α) are a set of cluster-specific random effects, βj are fixed effects for time j,
Xij is an intervention indicator taking on the value 1 if cluster i is allocated to the active
intervention at time j and 0 otherwise, and θ is the intervention effect. This model implies
that the response Yijk is normally distributed with mean µij and total variance σ2y = σ2α+σ2e ,

while the cluster-level variance is σ2
α+σ

2
e

K [1 + (K − 1)ρ], where ρ = σ2
α

σ2
α+σ

2
e

is the intra-class

correlation (ICC), a measure of the proportion of the total variance due to variation between
the clusters.

For the basic model considered by Hussey and Hughes (HH), power calculations can be ob-
tained by using the following relationship

power = Φ

(
θ√
V (θ)

− zsl/2

)
,

where V (θ) is the variance of the estimator of the intervention effect θ, defined as a relatively
simple function of the design matrix X. This formula can be used to determine the optimal
sample size n.

1.2. Simulation-based sample size calculations

The use of a simulation-based approach to determine the optimal sample size for a study is
not a new concept, nor is it specific to the design of SWTs (Gelman and Hill 2006; Burton
et al. 2006; Landau and Stahl 2013). In a nutshell, the idea is to consider a model to represent

4 SWSamp: Simulation-based sample size

the data generating process (DGP), which describes how the researchers envisage the way in
which the trial’s data will eventually be observed. This should be the model that is used to
analyse the data, after the study has been conducted. Using the assumed DGP, data can be
simulated a large number of times and the resulting “virtual trials” can be analysed using the
proposed analysis model.

Some of the parameters may be varied across the simulations: for example, it is interesting
to investigate the results obtained by varying the total number of observations. The optimal
sample size is set to the minimum number of subjects for which the proportion of simulated
trials that correctly deem the intervention as significant at the set sl−level is greater than or
equal to the required power.

The main advantage of using simulation-based approaches to determine the sample size is that,
in principle, any DGP can be assumed, no matter how complex. Of course, trials associated
with more complicated designs will also require longer computational time to produce a
sufficient number of runs to fully quantify the operating characteristics, e.g. in terms of the
relationship between power and sample size. This is essential to estimate the required sample
size properly.

In the case of a SWT, regardless of the modelling assumptions for the outcomes or the form
assumed for the cluster- and time-specific mean, the simulation procedure can be schematically
described as follows.

i. Select a total sample size n (e.g. total number of individuals measured) and a suitable
combination of the number of clusters I and time points J .

ii. Provide an estimate of the main parameters. These can be derived from the relevant
literature or expert opinion. We recommend thorough sensitivity analyses to investigate
the impact of these assumptions on the final results, in terms of optimal sample size.

iii. Simulate a dataset of size n from the assumed model.

iv. Analyse the resulting dataset and record whether the intervention effect is detected as
statistically significant.

Steps iii. and iv. are repeated for a large number S of times for each of the selected values of n
and the proportion of times in which the analysis correctly detects as significant the assumed
intervention effects is used as the estimated power. The lowest value of n in correspondence of
which the estimated power is not less than the pre-specified threshold (usually, 0.8 or 0.9) is
selected as the optimal sample size. A Monte Carlo estimate of the error around the estimated
power can be easily computed and used as a guideline to determine the optimal number of
simulations to be used. In many situations, a value of S in the order of 1000s will suffice.

Sensitivity to the choice of the fundamental parameters can be checked by selecting different
values and repeating the procedure. For example, it is possible to assess the impact of varying
the cluster size. An alternative version of this algorithm may involve the adoption of a fully
Bayesian approach (Spiegelhalter et al. 2004); this amounts to modelling the uncertainty in
the basic parameters using suitable probability distributions. For example, one could assume
that, based on currently available evidence, the between-cluster standard deviation is likely
to lie in a range between two extreme values a and b. This may be translated, for example,
into a prior Uniform distribution defined in (a, b). The sample size calculations would then

Gianluca Baio 5

account for the extra uncertainty in the actual value of this parameter. The benefits of this
strategy are of course higher if genuine information is available to the researchers.

Baio et al. (2015) introduce a general framework for sample size calculations in a SWT using a
simulation-based approach. In this paper, we explore the technical details of that framework
and introduce the R package SWSamp.

2. The R package SWSamp

SWSamp is designed to allow a wide range of simulation-based sample size calculations, specif-
ically (but not exclusively!) for a SWT. In its current version, SWSamp consists of 5 main
functions: the first one (which is currently in fact specified by three different commands)
performs the analytic sample size calculations using the method of HH. This can be used as
a quick alternative for more standard designs or as a first-order approximation in the case
of complicated designs (e.g. including multiple layers of correlation). The second function
replicates the sample size calculations based on the (correct form of) the “design effect” spec-
ified by Woertman et al. (2013). This too can be used very effectively in relatively standard
cases, but is less efficient in cases of more complex designs. The core functions of SWSamp
are make.swt, which can be used to simulate data as obtained by a reasonably wide range of
possible SWTs and sim.power, which actually performs the simulation-based computation of
the required sample size. As we will show in the following, sim.power can be used for other
DGPs (i.e. not specifically for a SWT), which increases the applicability of SWSamp.

In order to speed up the computation process (which can be intensive, under particularly
complex designs), SWSamp is designed to take full advantage of R multi-core processing. For
this reason, SWSamp“imports” the NAMESPACE of the R packages foreach, doParallel, iterators
and parallel (technically, this means that these packages need to be installed on the user’s local
machine, for SWSamp to work). In addition to these, SWSamp formally “depends” on the
R package lme4, which can be used to fit linear and generalized linear mixed-effects models.
This is relevant when analysing a SWT (which invariably includes some form of clustering
in the DGP). Other modelling strategies could be used instead, for example Generalised
Estimating Equations (GEE, Zeger and Liang 1986) or a full Bayesian model, e.g. based on
Integrated Nested Laplace Approximation (INLA, Rue et al. 2009). These extensions are
under development and will be included in future releases of SWSamp.

2.1. A simple example for a SWT: analytic sample size calculations

As a first simple example, consider a SWT based on a continuous outcome for which the
experimenter is assuming the following setting:

� J = 5 time points at which measurements are taken, in addition to a baseline time —
this amounts to a total of J + 1 = 6 measurements;

� An average cluster size of K = 20 individuals;

� A (relatively large!) cluster-level ICC ρ = 0.5, perhaps estimated using previous data
from similar studies;

� A baseline average value for the outcome µ = 0.3;

6 SWSamp: Simulation-based sample size

� A treatment effect θ = −0.3875, implying a reduction in the outcome level for the
treated units;

� A residual standard deviation σe = 1.55;

� A cross-sectional design, in which measurements are taken at discrete time points. Indi-
viduals are measured only once and at the next time point it is assumed that the sample
is made by independent units (i.e. the case of a Intensive Care Unit, ICU, where pa-
tients are assumed to spend a small amount of time; if the distance between consecutive
time points is reasonably large, it can be assumed that the sample of patients at time
j is different than that observed at time j + 1);

� A pre-specified significance level of 0.05 and a target power of at least 0.8.

Analytic sample size calculations based on HH: Normally distributed outcome

Because of the specific design considered here, it is possible to directy use HH’s exact formula
to compute the power, for any given value of the number of clusters I. For instance, we could
use the SWSamp function HH.normal in the following way.

> library(SWSamp)
> HH.normal(mu=0.3,b.trt=-0.3875,sigma=1.55,I=14,J=5,K=20,rho=.5)

The function HH.normal returns several outputs, including the estimated power, estimates for
the standard deviation components and information about the assumed SWT setting.

$power
[1] 0.8112651

$sigma.y
[1] 2.192031

$sigma.e
[1] 1.55

$sigma.a
[1] 1.55

$setting
$setting$n.clusters
[1] 14

$setting$n.time.points
[1] 5

$setting$avg.cluster.size
[1] 20

Gianluca Baio 7

$setting$design.matrix
Baseline Time 1 Time 2 Time 3 Time 4 Time 5

10 0 1 1 1 1 1
4 0 1 1 1 1 1
13 0 0 1 1 1 1
12 0 0 1 1 1 1
8 0 0 1 1 1 1
6 0 0 0 1 1 1
11 0 0 0 1 1 1
9 0 0 0 1 1 1
1 0 0 0 0 1 1
2 0 0 0 0 1 1
14 0 0 0 0 1 1
7 0 0 0 0 0 1
5 0 0 0 0 0 1
3 0 0 0 0 0 1

The last element returned as output is a design matrix with a suggested randomisation list
— in this case, clusters 10 and 4 switch to the intervention at the first active time, clusters
13, 12 and 8 switch at the second active time point and so on. The function HH.normal has
three additional inputs: sig.level is the significance level and by default is set at 0.05. If
this is acceptable for the user, then there is no need to specify it explicitly.

Similarly, the argument which.var is a text string taking values on either ’within’ (the
default) or ’total’. If nothing is specified (e.g., in this case), then SWSamp will assume
that the value given in the argument sigma is for σe, the residual standard deviation and will
compute the total and cluster-specific standard deviations σy and σα, respectively, using the
fact that by definition σα =

√
ρσ2e/(1 − ρ) and σy =

√
σ2α + σ2e . On the other hand, if the

user sets which.var=’total’, then the value of 1.55 will be associated with the total standard

deviation σy; HH.normal then computes and σα =
√
σ2yρ and σe =

√
σ2y − σ2α. In the case

described above, since no value is specified for the argument which.var, SWSamp estimates
σe = 1.55, the value set for the input sigma and because ρ is set to 0.5 then σe = σα.

Finally, the third argument is X, which indicates the (re-ordered, so as to become triangular)
SWT design matrix and takes the default value NULL. When nothing is specified, then SWSamp
will automatically compute a “balanced” design matrix, trying to divide as evenly as possible
the I clusters across the (J + 1) time points. In this case, the ratio I/J is not an integer and
thus the allocation is done by having 2 clusters switching at the first active time point and
then having 3 clusters switching at each of the remaining five active time points. This means
that out of the I(J + 1) = 84 cells of the design matrix, 48% are “1”s, indicating instances
where a cluster is allocated to the intervention arm. While in this case the effect of this
choice is likely to be minimal in terms of the resulting power, there may be cases where the
automatic allocation favours the intervention arm (i.e. produces a design matrix in which the
number of “1”s is much greater than the number of “0”s).

For example, suppose the user specified a design matrix using the following code

> X <- matrix(0,14,6)
> X[1:4,2:6] <- X[1:8,3:6] <- X[1:10,4:6] <- 1; X[1:12,5:6] <- 1; X[1:14,6] <- 1
> X

8 SWSamp: Simulation-based sample size

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0 1 1 1 1 1
[2,] 0 1 1 1 1 1
[3,] 0 1 1 1 1 1
[4,] 0 1 1 1 1 1
[5,] 0 0 1 1 1 1
[6,] 0 0 1 1 1 1
[7,] 0 0 1 1 1 1
[8,] 0 0 1 1 1 1
[9,] 0 0 0 1 1 1

[10,] 0 0 0 1 1 1
[11,] 0 0 0 0 1 1
[12,] 0 0 0 0 1 1
[13,] 0 0 0 0 0 1
[14,] 0 0 0 0 0 1

This would imply a much higher proportion of the cells in X that are “1”s (57%). If the power
was computed using this specification, the results would be slightly different than the one in
which the design matrix is automatically determined to have an allocation that is as even as
possible.

> auto <- HH.normal(mu=0.3,b.trt=-0.3875,sigma=1.55,I=14,J=5,K=20,rho=.5)
> user <- HH.normal(mu=0.3,b.trt=-0.3875,sigma=1.55,I=14,J=5,K=20,rho=.5,X=X)
> user$power

[1] 0.8027561

If on the other hand, the user had specified yet another design matrix, this time defined as

> X2 <- matrix(0,14,6)
> X2[1:2,2:6] <- X2[1:4,3:6] <- X2[1:6,4:6] <- X2[1:8,5:6] <- X2[1:14,6] <- 1

(this implies that only 40% of the cells are “1”s) and then computed the analytic power, the
results would be slightly different again.

> user2 <- HH.normal(mu=0.3,b.trt=-0.3875,sigma=1.55,I=14,J=5,K=20,rho=.5,X=X2)
> user2$power

[1] 0.7971512

As a general rule, the application of a “balanced” design will tend to increase the power by
balancing the number of measurements in either arm of the trial.

Analytic sample size calculations based on HH: non-Normally distributed outcome

HH’s computations can be brought to bear even in cases where the outcome is not directly
Normally distributed, by considering asymptotic arguments. For instance, we could consider

Gianluca Baio 9

a SWT where the outcome is the presence of bacterial infection among patients in Intensive
Care Units (ICUs), which are sequentially moved to a regime of specialised cleaning. In this
case, we could assume that the response for the k−th individual in cluster i at time j is
Yijk ∼ Bernoulli(µij , nijk), where µij and nij are the cluster- and time-specific probability
of infection and sample size, respectively. In this case, the model specified in (1) can be
generalised to

φij = g(µij) = logit(µij) = log

(
µij

1 − µij

)
= αi + βj +Xijθ. (2)

The model in (2) is a simple generalised mixed linear model; more complex structures may
be necessary (e.g. to account for additional layers of clustering, or include other covariates).

To fit this model in SWSamp and determine the optimal sample size under given, pre-specified
circumstances, it is possible to use the function HH.binary, for example using the following
commands.

Defines the basic parameters
p1 <- 0.26 # baseline probability of the outcome in the control group
OR <- 0.56 # assumed treatment effect (in terms of odds ratio)
J <- 5 # number of time points (excluding the baseline measurement)
K <- 20 # assumed average cluster size
rho <- 0.3 # assumed intra-class correlation
sig.level <- 0.05 # assumed significance level
which.var <- "within" # specifies whether the variance is within or total

Computes the power using the analytic formula
HH.binary(p1,OR,I=8,J,K,rho,sig.level,which.var,X=NULL)

which returns the following output

$power
[1] 0.5276896

$p1
[1] 0.26

$p2
[1] 0.1644083

$sigma.y
[1] 0.485341

$sigma.e
[1] 0.4060654

$sigma.a
[1] 0.2658322

10 SWSamp: Simulation-based sample size

$setting
$setting$n.clusters
[1] 8

$setting$n.time.points
[1] 5

$setting$avg.cluster.size
[1] 20

$setting$design.matrix
Baseline Time 1 Time 2 Time 3 Time 4 Time 5

8 0 1 1 1 1 1
7 0 0 1 1 1 1
5 0 0 1 1 1 1
4 0 0 0 1 1 1
3 0 0 0 0 1 1
2 0 0 0 0 1 1
6 0 0 0 0 0 1
1 0 0 0 0 0 1

This works pretty much in the same way as the function HH.normal and in fact most of the
inputs are the same. What does change is the set of input values that are specific to the type
of outcome: p1 instead of mu and OR instead of b.trt. In addition, the Bernoulli model does
not require the specification of the residual variance and thus there is no need to provide the
argument sigma to the call to the function HH.binary.

As suggested by Baio et al. (2015), a related issue concerns the fact that, in the binary and
count outcome cases, it is more cumbersome to assume that information is provided in terms of
the total variance. This is because, unlike the Normal distribution, the Bernoulli and Poisson
distributions are characterised by a single parameter, which simulataneously determines both
the linear predictor and the variance. Consequently, because the linear predictor includes
the cluster-specific random effects αi, assuming a fixed total variance σ2y implies in (2) a re-
scaling of the baseline value µ to guarantee that the resulting total variance approximates the
required value. For this reason, when using a simulation-based approach for non-normally
distributed outcomes it is easier to provide information on the within-cluster variance σ2e as
input.

In the case of count outcomes, SWSamp allows analytic computations using the function
HH.count, which works in a very similar way. A call to this function would be done by using
the following code.

HH.count(lambda1,RR,I,J,K,rho,sig.level,which.var,X)

where lambda1 is the baseline (controls) rate of occurrence of the event under investigation;
RR is the treatment effect measured in terms of the relative risk; and similar arguments apply
to the other inputs.

Gianluca Baio 11

Analytic sample size calculations based on the Design Effect

The SWSamp function DE.woert can be also used to compute the “Design Effect” (DE) for a
SWT, based on the (correct) formulation of the equation provided by Woertman et al. (2013)
and presented in Baio et al. (2015). In a nutshell, the DE is an inflation factor that corrects
the analytic sample size based on an individual-randomised trial to account for the specific
form of correlation induced by the SW design.

Consider for example a SWT in which the outcome is a binary variable and the treatment
effect is assumed to translate to an odds ratio of 0.53 for the outcome of interest. The main
inputs that are required for DE.woert are:

� outcome: a string (default ’cont’ to indicate a continuous outcome, but possible values
are ’bin’ or ’count’, for binary or count data, respectively);

� input: a R list containing the following arguments:

– For a continuous outcome

1. delta: treatment effect;

2. sd: pooled population standard deviation.

– For a binary outcome

1. p1: baseline probability of outcome;

2. either p2 (treatment probability of outcome), or OR (treatment effect as odds
ratio).

– For a count outcome

1. r1: baseline rate of outcome;

2. either r2 (treatment rate of outcome), or RR (treatment effect as relative risk).

� K: the average cluster size;

� J: the number of time points (excluding baseline);

� B: the number of baseline measurement times (default = 1);

� T: the number of measurement times during each crossover point;

� rho: the ICC;

� sig.level: the significance level (default at 0.05);

� power: the required power (default at 0.8).

The following is a simple example of how the function DE.woert can be used.

> input <- list(OR=.53,p1=.26)
> K <- 20
> J <- 5
> rho <- .2
> x <- DE.woert(input=input,K=K,J=J,rho=rho)
> x

12 SWSamp: Simulation-based sample size

$n.cls.swt
[1] 7

$n.pts.swt
[1] 776.4877

$DE.woert
[1] 1.597711

$CF
[1] 0.2662852

$n.rct
[1] 486

The output of this function is: n.cls.swt, the number of clusters required for a SWT (in
this case, 7); n.pts.swt, the total number of subjects that need to be observed under the
current design (776); DE.woert, the design effect due to clustering (1.6); CF, the correction
factor attributable to the use of the SWT (0.27); and finally n.rct, the number of subjects
that would be included in a RCT with the same power as that of the SWT.

2.2. Simulation-based sample size calculations

The SWSamp function sim.power can be used for different choices of the parameter I, indi-
cating the number of clusters and assess which of these is the minimum required to hit the
pre-specified power.

For example, the following code can be used to estimate the power corresponding to such a
design including I = 14 clusters, using the following R call:

> library(SWSamp)
> x <- sim.power(I=14,J=5,K=20,rho=0.5,mu=0.3,sigma.e=1.55,
+ b.trt=-0.3875,n.sims=100)

which would simulate and analyse n.sims=100 “virtual trials” with the given design. The
object x is a R list containing the following elements:

� power: the estimated power for the current configuration. If the model does include
random effects (which is the case for a SWT), then SWSamp assesses whether the “true”
effect is correctly detected by computing the 100 × (1 − sl)% interval around the point
estimate for the “treatment effect” and checking whether it is entirely above or below 0
(in which case, the results are deemed as “significant” for that particular simulated trial)
The average of the simulations is the estimate of the power. The choice of focussing
on estimation rather than hypothesis testing is also justified because it is in general
difficult to assess the correct degrees of freedom of the resulting (linear) mixed model.
The p-value could be computed using the approximation in Satterthwaite (1946), or
by using a rougher Normal approximation. Neither however is free from problems, as
suggested by Pinheiro and Bates (2000).

Gianluca Baio 13

� time2run: the computational time (in seconds);

� ci.power: an estimated 100× (1− sl)% interval for the power. This is based on a rela-
tively crude Normal approximation and computed using the results from the simulation
procedure;

� theta: the estimated treatment effect from the simulation procedure, together with an
estimate of its variability;

� sd.comps: the estimated standard deviation components, including the cluster and resid-
ual values indicated by σa and σe, respectively, in the model described in equation (1);

� setting: a R list including details of the setting specified by the user.

These can be explored by typing in R:

> x

which returns the following output

$power
[1] 0.8

$time2run
Time to run (secs)

3.813

$ci.power
[1] 0.7212065 0.8787935

$theta
Estimate Standard Error

-0.3660754 0.1362529

$sd.comps
cluster (Intercept) Residual

1.581440 1.530685

$setting
$setting$n.clusters
[1] 14

$setting$n.time.points
[1] 5

$setting$avg.cluster.size
[1] 20

$setting$design

14 SWSamp: Simulation-based sample size

[1] "cross-sec"

$setting$formula
y ~ treatment + factor(time) + (1 | cluster)
<environment: 0xd6aa96c>

2.3. User-defined data generating processes

Of course, each trial may have some characteristic that is just specific to the particular setting
under consideration. Thus, SWSamp allows the user to specify a data generating process
to be used in the analysis of the “virtual trials” and thus the estimation of the resulting
power/required sample size.

As a first example, consider a very simple trial based on a continuous outcome with two
treatment groups: the first one (coded as t = 0) is the control arm of the trial (e.g. individuals
subject to the status quo, or a placebo), while the second one (t = 1) is the group of individuals
given the active treatment.

This situation can be again modelled by assuming y ∼ Normal(µ + θt, σ2), where µ is the
baseline outcome for the controls and θ is the treatment effect. The user could specify a
function in R, something like

> simple.trial <- function(n,mu=0,theta,sigma) {
+ x <- rbinom(n,1,.5)
+ linpred <- mu+theta*x
+ y <- rnorm(n,linpred,sigma)
+ return(data.frame(y=y,x=x))
+ }

The function simple.trial takes as arguments the overall sample size n, the baseline mean
outcome mu (for which the default value is specified as 0), the treatment effect theta and the
common standard deviation in the two groups sigma. For example, a R call

> data <- simple.trial(n=10,mu=0,theta=1,sigma=1)

returns the simulated dataset

y x
1 -1.8201517 0
2 0.1865416 1
3 0.9559052 0
4 2.2738202 1
5 0.3133810 0
6 2.3277645 1
7 -0.6531422 0
8 1.6258888 1
9 0.4091159 1
10 0.5854884 1

Gianluca Baio 15

For such a design, it is possible to determine the optimal sample size analytically, for instance
using the R function power.t.test, e.g. calling

> power.t.test(delta=1,sd=1,sig.level=0.05,power=0.8)

Two-sample t test power calculation

n = 16.71477
delta = 1

sd = 1
sig.level = 0.05

power = 0.8
alternative = two.sided

NOTE: n is number in *each* group

which suggests that a total sample size of n = 34 individuals is required (notice that the
function power.t.test indicates the treatment effect by means of the parameter delta).

The user can also perform this calculation based on simulations. For example, typing

> x <- sim.power(data=simple.trial,inpts=list(n=34,theta=1,sigma=1),
+ formula=y~x,treat.name="x",n.sims=1000)
> x

returns the output

$power
[1] 0.824

$time2run
Time to run (secs)

0.787

$ci.power
[1] 0.8003851 0.8476149

$theta
Estimate Standard Error
0.9991047 0.3425531

$sd.comps
NULL

$setting
$setting$formula
y ~ x

16 SWSamp: Simulation-based sample size

$setting$method
[1] "lm"

$setting$family
[1] "gaussian"

This time, the call to the function sim.power has different arguments than in the standard
case. In fact, it is possible to specify the optional argument data which is simply the name
of the user-defined function telling R what the data generating process to be used to create
the “virtual trials” is; this can be complemented by the argument inpts, a R list including
the values that the user wants to assign to the inputs of the function defined in data. In this
case, simple.trial requires that the values for n, theta and sigma are given (and if nothing
is specified for mu, the default value is taken). If the function specified as data had no input,
then the optional argument inpts would not be necessary; if the user does not specify it,
sim.power will assume that it is not needed and will automatically set it to NULL.

When considering user-defined functions for the data generating process, it is probably nec-
essary to specify a formula to instruct R and SWSamp as to what is the underlying model
that should be used for the analysis of each simulated trial. In this simple case, we specify
formula=y~x. In addition to this, SWSamp needs to know which of the covariate(s) is the
“treatment” — this is because it needs to compute the “treatment effect” θ and then the
resulting power based on whether it is detected as “significantly” different from 0. If the
optional argument treat.name is not specified, sim.power assumes that one of the covariates
is called ’treatment’; this is not the case in the current example and thus the user needs to
tell sim.power that in fact the variable called ’x’ is the one for which the treatment effect
should be computed.

Finally, we can specify the number of simulations to be used, in this case we selected
n.sims=1000 — notice that since this is the default value, the inclusion of this extra argument
is not essential.

While analysing the simulated data, SWSamp checks that the model specification contains
structured (random) effects, in the syntax of the R package lme4, i.e. using the form (1|x)
to indicate a varying intercept for a covariate x, or (z|x) to indicate a random slope for the
covariate z, depending on the levels of the covariate x. If random effects are present, SWSamp
will analyse the simulated dataset using (g)lmer, the lme4 functions to fit (generalised) linear
mixed models. If there are no random effects in the model specification (e.g. in the present
example), then SWSamp will analyse the simulated datasets using a simple (generalised)
linear model, i.e. the R command (g)lm.

The choice of the distributional assumption is governed by the extra argument family that
the user can specify to instruct SWSamp on the nature of the outcome. The default value
is family=’gaussian’, indicating that the outcome is associated with a Normal distribution
and thus the resulting analysis will be performed using a linear model (i.e. using lmer, in the
presence of random effects). Other options include family=’binomial’ or family=’poisson’,
in which cases a suitable generalised linear (mixed) model is used.

For example, consider again a very simple DGP in which the outcome variable is y ∼
Binomial(π, n), with logit(π) = µ + θt and where µ and θ represent the baseline log-OR
for the event described by y (which applies to the controls) and the log-OR for the treatment
effect, assuming t = 0, 1 is the treatment, respectively.

Gianluca Baio 17

A simple R function to simulate this DGP is the following

> bin.trial <- function(n,p1,OR) {
+ p2 <- OR*(p1/(1-p1))/(1+OR*(p1/(1-p1)))
+ x <- rbinom(n,1,.5)
+ linpred <- log(p1/(1-p1)) + log(OR)*x
+ pi <- exp(linpred)/(1+exp(linpred))
+ y <- rbinom(n,1,pi)
+ return(data.frame(y=y,x=x))
}

The function bin.trial takes as inputs the sample size n, the baseline probability of the
outcome p1 and the odds ratio OR — obviously

µ = log

(
p1

1 − p1

)
and θ = log(OR).

The power for this trial can be computed using sim.power by specifying

> x <- sim.power(data=bin.trial,inpts=list(n=n,p1=p1,OR=OR),
+ formula=y~x,treat.name="x",family="binomial")

assuming that suitable values for n, p1 and OR are specified by the user. For instance, setting
n = 100, p1 = 0.54 and OR = 1.3 and running sim.power would return the following results

$power
[1] 0.107

$time2run
Time to run (secs)

1.127

$ci.power
[1] 0.08783173 0.12616827

$theta
Estimate Standard Error
0.2847529 0.4122627

$sd.comps
NULL

$setting
$setting$formula
y ~ x

$setting$method
[1] "glm"

18 SWSamp: Simulation-based sample size

$setting$family
[1] "binomial"

As a more complex example, we could actually define a function that creates data from a SW
design. SWSamp has a built-in function for data generating processes that is suitable for a
SWT; this is called make.swt and basically takes as inputs many of the arguments that are
specified in the default call to sim.power. For example, we could define

> sw.trial <- function(){
+ make.swt(I=8,J=5,K=10,mu=.3,b.trt=-.3875,sigma.e=1.55,rho=.4)
+ }
> data <- sw.trial()
> rbind(head(data),tail(data))

y person time cluster treatment linpred b.trt
1 0.3609523 1 0 1 0 -1.1180467 -0.3875
2 0.1632296 2 0 1 0 -1.1180467 -0.3875
3 -2.0574118 3 0 1 0 -1.1180467 -0.3875
4 1.2822661 4 0 1 0 -1.1180467 -0.3875
5 -2.7932521 5 0 1 0 -1.1180467 -0.3875
6 -2.7640185 6 0 1 0 -1.1180467 -0.3875
475 -1.8814225 5 5 3 1 -0.5500236 -0.3875
476 2.9808526 6 5 3 1 -0.5500236 -0.3875
477 0.9249720 7 5 3 1 -0.5500236 -0.3875
478 -0.7509720 8 5 3 1 -0.5500236 -0.3875
479 -3.3756894 9 5 3 1 -0.5500236 -0.3875
480 -3.7219299 10 5 3 1 -0.5500236 -0.3875

This function generates a dataset that could arise from a SWT with I = 8 clusters, J = 5
time point (excluding the baseline), an average cluster size of K = 10 individuals, a baseline
outcome of µ = 0.3, a treatment effect of −0.3875, a cluster-level ICC ρ = 0.4 and assuming
a residual variance σe = 1.55. Executing the command sw.trial() generates the full dataset
(which, incidentally contains 480 rows). Notice that since all the relevant inputs are defined
inside the function sw.trial, there are no arguments to be added to the call to the function.
As no argument design is specified in the call to make.swt, SWSamp assumes that the default
cross-sec should be used, implying that the resulting dataset is constructed under a cross-
sectional design, with individuals observed only once.

The function sw.trial can be used as an argument to sim.power to estimate the power for
this particular SWT. For example, the user can type

> x <- sim.power(data=sw.trial)
> x

$power
[1] 0.32

Gianluca Baio 19

$time2run
Time to run (secs)

11.209

$ci.power
[1] 0.2910736 0.3489264

$theta
Estimate Standard Error

-0.3835148 0.2530941

$sd.comps
cluster (Intercept) Residual

0.9874177 1.6554100

$setting
$setting$formula
y ~ treatment + factor(time) + (1 | cluster)
<environment: 0xe79aa20>

$setting$method
[1] "lmer"

$setting$family
[1] "gaussian"

In this case, n.sims=1000 simulations are used (since no value is selected for this argument),
which combined with the more complex DGP associated with the SWT implies a longer
running time (about 11 seconds). The power for this configuration is estimated at 0.33 and
likely to range between 0.30 and 0.36. This is in line with the fact that the estimates of the
treatment effect theta (−0.38) is not obtained with large precision — the standard error is
0.25, which means an approximate 95% interval is [−0.89; 0.13], i.e. it crosses the threshold
value of 0.

3. Conclusions

SWSamp is designed with the specific aim of dealing with sample size calculations for a
Stepped Wedge trial; this implies the need to account for complications in the underlying set
up, including different layers of structured effects, time trends and other issues that may be
complex to comprehensively address using closed-form calculations.

However, we have made an effort to code the core functions so that the user can actually
extend the general framework and apply the methods to a wider range of designs. Ideally,
suitable functions specifying different data generating process will be made available (and the
hope is to create a repository to which user can contribute) so that the process can be made
extremely general and widely applicable in practice.

Simulations-based sample size calculations can be very useful in real-world applications, par-

20 SWSamp: Simulation-based sample size

ticularly with a view at aligning the model assumed to describe how the data are generated
in the context of the trial under investigation and the one used to analyse the data, once they
become available. Future extensions to the package involve the use of more complex analysis
models (such as GEE or full Bayesian models).

References

G. Baio, A. Copas, G. Ambler, J. Hargreaves, E. Beard, and R. Omar. Sample size calculation
for a stepped wedge trial. Trials, 16:354, Aug 2015. doi:10.1186/s13063-015-0840-9. URL
http://www.trialsjournal.com/content/16/1/354.

E. Beard, J. Lewis, A. Prost, A. Copas, C. Davey, D. Osrin, G. Baio, J. Thompson, K. Field-
ing, R. Omar, S. Ononge, and J. Hargreaves. Stepped wedge randomised controlled trials:
Systematic review. Trials, 2015.

A. Burton, D. Altman, P. Royston, and R. Holder. The design of simulation studies in medical
statistics. Statistics in Medicine, 25:4279–4292, 2006.

A. Copas, J. Lewis, J. Thompson, C. Davey, K. Fielding, G. Baio, and J. Hargreaves. De-
signing a stepped wedge trial: three main designs, carry-over effects and randomisation
approaches. Trials, 2015.

A. Gelman and J. Hill. Data analysis using regression and multilevel/Hierarchical models.
Cambridge University Press, Cambridge, UK, 2006.

J. Hargreaves, A. Copas, E. Beard, D. Osrin, J. Lewis, C. Davey, J. Thompson, G. Baio,
K. Fielding, and A. Prost. Five questions to consider before conducting a stepped wedge
trial. Trials, 2015.

M. Hussey and J. Hughes. Design and analysis of stepped wedge cluster randomised trials.
Contemporary Clinical Trials, 28:182–191, 2007.

S. Landau and S. Stahl. Sample size and power calculations for medical studies by simulation
when closed form expressions are not available. Statistical Methods in Medical Research, 22
(3):324–345, 2013.

J. Pinheiro and D. Bates. Mixed-effects models in S and S-PLUS. Springer, New York, NY,
2000.

H. Rue, S. Martino, and N. Chopin. Approximate Bayesian inference for latent Gaussian
models by using integrated nested Laplace approximations. Journal of the Royal Statistical
Society: Series B (statistical methodology), 71(2):319–392, 2009.

F. E. Satterthwaite. An Approximate Distribution of Estimates of Variance Components.
Biometrics Bulletin, 2:110–114, 1946.

D. Spiegelhalter, K. Abrams, and J. Myles. Bayesian Approaches to Clinical Trials and
Health-Care Evaluation. Wiley and Sons, London, UK, 2004.

http://dx.doi.org/10.1186/s13063-015-0840-9
http://www.trialsjournal.com/content/16/1/354

Gianluca Baio 21

W. Woertman, E. de Hoop, M. Moerbeek, S. Zuidema, D. Gerritsen, and S. Teerenstra.
Stepped wedge designs could reduce the required sample size in cluster randomized trials.
Journal of Clinical Epidemiology, 66(7):52–58, 2013.

S. Zeger and K. Liang. Longitudinal data analysis for discrete and continuous outcomes.
Biometrics, 42(1):121–130, Mar 1986.

Affiliation:

Gianluca Baio
Department of Statistical Science
University College London
Gower Street, London, WC1E 6BT (UK)
E-mail: g.baio@ucl.ac.uk
URL: http://www.statistica.it/gianluca

mailto:g.baio@ucl.ac.uk
http://www.statistica.it/gianluca

	Introduction
	Analytic sample size calculations for a SWT
	Simulation-based sample size calculations

	The R package SWSamp
	A simple example for a SWT: analytic sample size calculations
	Analytic sample size calculations based on HH: Normally distributed outcome
	Analytic sample size calculations based on HH: non-Normally distributed outcome
	Analytic sample size calculations based on the Design Effect

	Simulation-based sample size calculations
	User-defined data generating processes

	Conclusions

