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1 The R package bmeta

The R package bmeta provides a collection of functions for analysing a relatively large class of models
using Bayesian meta-analysis in R. The package includes functions for the calculation of various e�ect
size or outcome measures (i.e. odds ratios, mean di�erence and incidence rate ratio) for di�erent
types of data, based on MCMC simulations. Users are allowed to �t �xed- and random-e�ects
models with a pre-speci�ed set of di�erent priors to the data. When e�ects of additional covariates
are observed, meta-regression can be performed to adjust for moderators. Table 1 presents all the
models included in the package for selection with explanation.

Table 1: Models provided by bmeta
Outcome Model name Description Type

Binary

std.norm meta-analysis with normal prior �xed/random
std.dt meta-analysis with t-distribution prior �xed/random
reg.norm meta-regression with normal prior �xed/random
reg.dt meta-regression with t-distribution prior �xed/random

Continuous

std.ta meta-analysis for studies reporting two arms
separately

�xed/random

std.mv meta-analysis for studies reporting mean dif-
ference and variance only

�xed/random

reg.ta meta-regression for studies reporting two
arms separately

�xed/random

reg.mv meta-regression for studies reporting mean
di�erence and variance only

�xed/random

Count

std meta-analysis �xed
std.unif meta-analysis with uniform prior random
std.hc meta-analysis with half-Cauchy prior random
reg meta-regression �xed
reg.unif meta-regression with uniform prior random
reg.hc meta-regression with half-Cauchy prior random

Furthermore, the package includes functions for plots which display modelling output in a stand-
ard manner (i.e. posterior or forest plots). Trace plots and some other diagnostic plots are also
available for assessing model �t and performance.

bmeta works by allowing the user to specify the set of options in a standardised way in the R
command terminal. Currently bmeta implements 23 models: those shown in Table 1 and a `null'
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model based on assuming independence across the studies (no pooling); when the user has selec-
ted the required con�guration (random vs �xed e�ects; choice of outcome and prior distributions;
presence of covariates), bmeta writes a suitable JAGS �le in the working directory. This is used to
call the package R2Jags and perform the actual analysis, but can also be considered as a sort of
�template� � the user can then modify to extend the modelling by changing priors in a way that
is not automatically done by bmeta and use it for future references. For example, in the working
directory, users can �nd a text �le containing codes for a speci�c model:

## a. binary standard fixed -effects meta -analysis with normal prior
model {
for (s in 1:S){
y0[s]~dbin(pi0[s],n0[s])
y1[s]~dbin(pi1[s],n1[s])
logit(pi0[s])<-alpha[s]
logit(pi1[s])<-alpha[s]+delta
alpha[s]~dnorm (0 ,0.0001)
}
### prior ###
delta~dnorm (0 ,0.0001)
rho <-exp(delta)
}

This basic template includes a vague prior for delta, which can be modi�ed if there is some
external evidence on this parameter, i.e. Normal(0,1). It is also possible to replace the prior for
delta by Student t-distribution:

delta~dt(0,0.5,v)
v~dunif (0,8)

where v represents the degree of freedom of the distribution. Notice that as the prior distribution
has been respeci�ed, initial values (i.e. inits<-function(){...}) need to be modi�ed accordingly.
In the �rst case, inits is de�ned as:

inits <-function (){alpha=rnorm(S),delta=rnorm (1)}

Whereas in the second case, inits is replaced by:

inits <-function (){alpha=rnorm(S),v=runif (1)}

In order for bmeta to work properly, users need to ensure that the data are in a R `list'. For
example, the user may start with data on the set of studies to be analysed in csv format. These can
be read in R

> data=read.csv("data.csv")
> data

study year y1 se1 y0 se0 X0
1 Hwang 2004 17.60 1.20 16.30 1.28 1
2 Ashrafi 2005 6.17 0.94 10.96 1.82 0
3 Ensieh 2010 10.88 1.07 13.37 1.37 0
4 Agha 2010 8.56 0.58 11.95 1.10 1
5 Kim 2012 14.20 0.57 14.70 0.57 1
6 Bulent 2012 17.11 0.75 18.11 1.04 1

and will then need to be pre-processed before they can be applied to bmeta. For example, the user
could re-format the original values using the following code:

> data <- list(y0=data$y0 ,y1=data$y1 ,se0=data$se0 ,se1=data$se1)
> data
$y0
[1] 16.30 10.96 13.37 11.95 14.70 18.11
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$y1
[1] 17.60 6.17 10.88 8.56 14.20 17.11

$se0
[1] 1.28 1.82 1.37 1.10 0.57 1.04

$se1
[1] 1.20 0.95 1.078 0.58 0.57 0.745

1.1 Models for binary data

Apart from a `null' model, there are 8 models in bmeta for binary data, with 4 models for meta-
analysis and another 4 for meta-regression. The bmeta package produces a pooled estimate (and
95% Credible Interval, CrI) in the form of odds ratio. The `null' model is presented at the end of
this section.

1.1.1 Modelling approach

Suppose for a set of s = 1, 2, ..., S independent studies, we observe the total number of events out of
the case arm and that for the control arm. Let πsk, nsk denote the probability of an event and the
total number of individuals, respectively, in the kth arm and sth study and the number of events,
ysk, in study s arm k is assumed to follow a Binomial distribution:

ysk ∼ Binomial(πsk, nsk) (1)

As the outcome is binary (individuals can either develop a disease/risk factor or not), a logit
link function is then used to ensure that the probabilities can lie within a range of 0 and 1.

logit(πsk) =

{
αs, if k=0 (control arm)

αs + δs, if k=1 (case arm)

where αs is the log-odds of the control group in sth study and δs is the study-speci�c intervention
e�ects (on log scale).

While the logistic regression is a suitable model to be used here, other link functions (i.e. probit)
can also be considered if appropriate. This can be easily done by modifying the model template
produced by bmeta.

However, when e�ects of covariates are observed (cases where meta-regression needs to be ap-
plied):

logit(πsk) =

{
αs + βX, if k=0 (control arm)

αs + βX + δs, if k=1 (case arm)

where X (i.e. X0, X1, X2, . . . , XJ) is a matrix with covariates information (i.e. binary, continuous
or categorical variables). For example, we may assume that certain studies use study population
with a higher BMI, which may result in reduced treatment e�ect compared with studies that use
individuals with a lower BMI. Heterogeneity due to di�erences in study-level BMI may be an issue
if this factor is not considered for modelling. β (i.e. β0, β1, β2, . . . , βJ) is a vector of regression
parameters of interest.

It should be noted that if a covariate is categorical, a `baseline' category needs to be speci�ed
and then dummies for each of the rest categories should be created in order for the model to run
properly.
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For example, assume we suspect that there is impact of ethnicity on treatment e�ect and 4
di�erent ethnic groups (i.e. `White', `Black', `Asian' and `Mixed') are reported by all the studies
(i.e. one ethnic group for a single study). We then need to choose a `baseline' category, i.e. `Asian',
and then create dummy (indicator) variables for the remaining three categories. Thus, in this meta-
regression model, J = 3 covariates X0,X1,X2 should be used, each representing the incremental
e�ect of the ethnic group in comparison to the baseline.

Users need to pay special attention to categorical variables and format them into the right
form before calling bmeta to perform analyses. This applies to all meta-regression models included
in bmeta.

For �xed-e�ects models, it is assumed that all studies estimate the same intervention e�ect
whereas for the random-e�ects models, we assume there is exchangeability between studies and
therefore, the `true' intervention e�ect is allowed to follow a distribution with some variability.

δs = δ Fixed-e�ects model

δs ∼ Normal(µ, σ2) Random-e�ects models

where δ and µ are the pooled log-odds ratio for �xed- and random-e�ects models, respectively; σ is
the standard deviation between studies when random-e�ects models are applied.

The pooled odds ratio for �xed-e�ects models is computed as ρ = exp(δ) whereas that for
random-e�ects models is ρ = exp(µ). The study-speci�c estimates only exist when random-e�ects
models are used and are calculated as γs = exp(δs).

The speci�cation of the model is completed by considering the baseline case � including minim-
ally informative prior distributions for some model parameters and for binary data, bmeta provides
two types of prior, namely, Normal and Student t-distribution prior. Notice that for all the meta-
regression models, apart from the priors speci�ed for individual cases, we consider by default inde-
pendent minimally informative prior for the vector of regression parameters of interest:

β0, β1, . . . , βJ
iid∼ Normal(0, 0.0001) (2)

The underlying assumption here is that the covariates generate no e�ects on the main study
estimate. We use 0.0001 here because models in JAGS require users to input the precision rather
than variance. Thus, indexing a Normal distribution with a scale parameter 0.0001 implies a variance
of 1/0.0001.

For �xed-e�ects meta-analysis with normal prior and �xed-e�ects meta-regression

with normal prior , the priors are speci�ed as below:

αs ∼ Normal(0, 0.0001) (3)

δ ∼ Normal(0, 0.0001) (4)

For �xed-e�ects meta-analysis with t-distribution prior and �xed-e�ects meta-regression

with t-distribution prior , while others remain the same, the prior for δ is replaced by:

δ ∼ t(0, 0.5, v)

v ∼ Uniform(0, 8)

The Student t-distribution has heavier tails and is therefore more robust to outliers.
For random-e�ects meta-analysis with normal prior and random-e�ects meta-regression

with normal prior , we include the same prior for αs according to (3) but instead of assigning prior
to δ, we give vague priors to µ and σ:

µ ∼ Normal(0, 0.0001)

σ ∼ Uniform(0, 5)
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Similarly for random-e�ects meta-analysis with t-distribution prior and random-e�ects

meta-regression with t-distribution prior , the prior for σ still applies whereas that for µ is
modi�ed as:

µ ∼ t(0, 0.5, v)

v ∼ Uniform(0, 8)

1.1.2 Independence model

The independent model (without pooling e�ects) using Bayesian methods is developed to examine
results for individual studies separately. While the Binomial distribution is still used to model events
in the two arms according to (1), a new parameter α1s is introduced to model the probability of
contracting a disease for cases.

logit(π0s) = α0s

logit(π1s) = α1s

log(OR) = α1s − α0s

OR = exp(α1s − α0s)

α0s, α1s
iid∼ Normal(0, 1.45)

The prior for α0s, α1s is di�erent from the assumptions made for the previous pooling models
as for most observational studies or trials, the odds ratios are very unlikely to go beyond 10. For
example, assume α1s and α0s follow the same distribution, Normal(0,σ2), then log(OR)=α1s−α0s ∼
Normal(0, 2σ2). Suppose the assumption that the odds ratio is unlikely to go beyond 10 holds, we
compute σ2 by

0 + 1.96
√
2σ2 = log(10)

σ2 = 0.69

After conversion, the precision (inverse of 0.69) equals to 1.45 here. Notice that there is no link
function between π0s and π1s, consequently, the pooling e�ect does not exist in this model.

1.1.3 Examples

In this section, we use a dataset `PE' as an example to specify how our models for binary data work.
We aim at investigating the relative risk of developing pre-eclampsia (PE) by comparing treatment
and control group of 9 diuretics trials. Notice that the dataset contains an additional covariate
`Region' (dummy variable) to indicate whether the study was conducted in Europe (Region=1) or
US (Region=0). Suppose random-e�ects meta-analysis with normal prior and random-

e�ects meta-regression with normal prior are selected as our modelling approach for this
dataset.

The data structure of PE in csv �le is shown below and it contains the minimum information
that users need to input:

> data = read.csv("PE.csv")
> data

Study Year y1 n1 y0 n0 Region
1 1 2003 14 131 14 136 1
2 2 2005 21 385 17 134 0
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3 3 2006 14 57 24 48 0
4 4 2007 6 38 18 40 1
5 5 2010 12 1011 35 760 0
6 6 2011 138 1370 175 1336 1
7 7 2012 15 506 20 524 1
8 8 2013 6 108 2 103 0
9 9 2014 65 153 40 102 1

Notice that y1, n1, y0 and n0 correspond to events in case arm, total number of cases, events in
control arms and total number of controls, respectively.

For now, we do not consider the covariate e�ect and therefore use random-e�ects meta-

analysis with normal prior for modelling. Below is an illustration of coding in R to format the
data input:

> data.list <- list(y0=data$y0 ,y1=data$y1 ,n0=data$n0 ,n1=data$n1)

We then call bmeta and specify the model to generate output:

> x <- bmeta(data=data.list ,outcome ="bin",model="std.norm",type="ran")
> x

Below is the summary printed by bmeta:

Inference for Bugs model at "model.txt", fit using jags ,
2 chains , each with 10000 iterations (first 5000 discarded),
n.thin = 5 n.sims = 2000 iterations saved

mu.vect sd.vect 2.5% 97.5% Rhat n.eff
alpha [1] -2.092 0.256 -2.622 -1.621 1.003 510
alpha [2] -2.004 0.255 -2.504 -1.524 1.004 400
alpha [3] -0.096 0.280 -0.646 0.448 1.001 2000
alpha [4] -0.348 0.309 -0.956 0.277 1.001 2000
alpha [5] -3.095 0.170 -3.441 -2.775 1.004 440
alpha [6] -1.888 0.078 -2.041 -1.741 1.005 350
alpha [7] -3.225 0.226 -3.706 -2.796 1.001 2000
alpha [8] -3.456 0.507 -4.586 -2.594 1.014 110
alpha [9] -0.382 0.203 -0.786 -0.016 1.001 2000
delta [1] -0.122 0.349 -0.797 0.591 1.004 400
delta [2] -0.820 0.324 -1.462 -0.202 1.008 200
delta [3] -0.955 0.383 -1.724 -0.237 1.006 290
delta [4] -1.129 0.465 -2.105 -0.279 1.001 2000
delta [5] -1.227 0.319 -1.848 -0.610 1.004 750
delta [6] -0.317 0.119 -0.555 -0.089 1.010 160
delta [7] -0.341 0.326 -0.985 0.300 1.005 470
delta [8] 0.291 0.637 -0.801 1.736 1.001 2000
delta [9] 0.043 0.255 -0.425 0.563 1.001 2000
gamma [1] 0.941 0.346 0.451 1.806 1.004 400
gamma [2] 0.464 0.154 0.232 0.817 1.008 200
gamma [3] 0.414 0.162 0.178 0.789 1.006 290
gamma [4] 0.358 0.162 0.122 0.757 1.001 2000
gamma [5] 0.309 0.102 0.158 0.543 1.004 750
gamma [6] 0.733 0.088 0.574 0.915 1.010 160
gamma [7] 0.750 0.249 0.373 1.350 1.005 470
gamma [8] 1.679 1.410 0.449 5.676 1.001 2000
gamma [9] 1.079 0.285 0.654 1.756 1.001 2000
mu -0.505 0.315 -1.133 0.128 1.004 490
rho 0.634 0.216 0.322 1.137 1.004 490
tau.delta 3.162 4.130 0.419 12.238 1.003 550
deviance 102.424 6.206 92.344 116.729 1.001 2000

For each parameter , n.eff is a crude measure of effective
sample size ,
and Rhat is the potential scale reduction factor (at
convergence , Rhat =1).
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DIC info (using the rule , pD = var(deviance)/2)
pD = 19.3 and DIC = 121.7
DIC is an estimate of expected predictive error (lower
deviance is better).

All parameters in this table exactly correspond to the model parameters introduced in the pre-
vious section. The parameter gamma[] represents the study-speci�c odds ratio and the pooled odds
ratio, rho, is 0.634 with a 95% CrI (0.322, 1.137). The between study variance is the inverse of
tau.delta, which equals to 0.316.

The object x automatically includes an element mod0, in which the results from the `null' models
are also stored. This can be accessed using the command

> x$mod0

Now we consider the e�ects of the covariate `Region' and perform random-e�ects meta-

regression with normal prior . The covariate `Region' is a dummy variable, and `US' is considered
to be the `baseline' category (Region=0) whereas `EU' is represented by `Region=1'. It should be
noted that for categorical variables that have more than 2 categories (i.e. n categories), a reference
group needs to be selected and dummies for each of the rest n−1 categories should be created. The
matrix `X' that includes information on covariates can be speci�ed using the cbind command in R,
i.e. X=cbind(data$cov1, data$cov2).

Similar as before, we format the data input and specify the model to be used:

> data.list <- list(y0=data$y0 ,y1=data$y1 ,n0=data$n0 ,n1=data$n1 ,X=cbind(
data$Region))

> x <- bmeta(data=data.list ,outcome ="bin",model="reg.norm",type="ran")
> x

Below is the output produced by bmeta, which is largely the same as the previous table. We can
see that rho slightly decreases with a narrower 95% CrI and the between study variance decreases
to 0.248. The underlying assumption for the regression models is that there is no additional e�ects
of exposure on the outcome of interest and the prior for coe�cients of covariates in the regression
is vague with large variability, which may have some in�uence on the results. However, if more
information on e�ects of ethnicity is available, i.e. the probability of developing PE is 5% higher for
women in the US, estimates with higher accuracy are expected by replacing more speci�c prior for
regression coe�cients, i.e. β0 ∼ Normal(−2.94, 0.01). Notice that the e�ective sample size (n.eff)
for certain model parameters are particularly low compared with the actual number of iterations
stored for inference, which may indicate potential problem for model convergence. Therefore, we
may want to check model convergence using diagnostic plots in bmeta and this is discussed in detail
in Section 2.

Inference for Bugs model at "model.txt", fit using jags ,
2 chains , each with 10000 iterations (first 5000 discarded),
n.thin = 5 n.sims = 2000 iterations saved

mu.vect sd.vect 2.5% 97.5% Rhat n.eff
alpha [1] -1.992 24.462 -48.857 47.494 1.001 2000
alpha [2] -2.161 30.575 -64.628 56.345 1.001 2000
alpha [3] -0.244 30.579 -62.231 58.416 1.001 2000
alpha [4] -0.244 24.476 -47.506 49.622 1.001 2000
alpha [5] -3.259 30.584 -65.119 55.519 1.001 2000
alpha [6] -1.773 24.465 -48.818 47.928 1.001 2000
alpha [7] -3.095 24.462 -50.188 46.389 1.001 2000
alpha [8] -3.509 30.575 -65.122 55.610 1.001 2000
alpha [9] -0.244 24.472 -47.180 49.428 1.001 2000
delta [1] -0.139 0.349 -0.796 0.578 1.011 150
delta [2] -0.817 0.306 -1.415 -0.230 1.015 180
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delta [3] -0.938 0.361 -1.682 -0.278 1.004 510
delta [4] -1.100 0.449 -2.055 -0.321 1.018 97
delta [5] -1.161 0.305 -1.770 -0.593 1.111 19
delta [6] -0.312 0.123 -0.550 -0.069 1.001 2000
delta [7] -0.368 0.317 -0.977 0.239 1.001 2000
delta [8] 0.097 0.587 -0.868 1.444 1.059 34
delta [9] 0.012 0.253 -0.472 0.517 1.009 170
gamma [1] 0.926 0.345 0.451 1.782 1.011 150
gamma [2] 0.463 0.144 0.243 0.794 1.015 180
gamma [3] 0.417 0.149 0.186 0.757 1.004 510
gamma [4] 0.366 0.158 0.128 0.726 1.018 97
gamma [5] 0.328 0.099 0.170 0.553 1.111 19
gamma [6] 0.737 0.090 0.577 0.933 1.001 2000
gamma [7] 0.727 0.232 0.376 1.270 1.001 2000
gamma [8] 1.341 1.084 0.420 4.236 1.059 34
gamma [9] 1.045 0.271 0.624 1.677 1.009 170
mu -0.528 0.286 -1.098 0.034 1.007 1700
rho 0.615 0.189 0.334 1.034 1.007 1700
tau.delta 4.030 8.892 0.500 15.752 1.074 30
deviance 103.264 6.452 92.761 117.361 1.018 92

For each parameter , n.eff is a crude measure of effective
sample size ,and Rhat is the potential scale reduction
factor (at convergence , Rhat =1).

DIC info (using the rule , pD = var(deviance)/2)
pD = 20.6 and DIC = 123.9
DIC is an estimate of expected predictive error (lower
deviance is better).

1.2 Models for continuous data

Apart from 2 `null' models, there are 8 models in bmeta for continuous data, with 4 models for meta-
analysis and another 4 for meta-regression. bmeta produces a pooled estimate (and 95% Credible
Interval, CrI) in the form of mean di�erence. We assume that for continuous data, there are two types
of studies: the �rst type of studies report detailed information (mean and standard deviation/error)
of both cases and controls while for the second type of studies, only limited amount of information
(mean di�erence and variance) can be retrieved. Di�erent models are designed for these two types
of studies.

1.2.1 Modelling approach for studies reporting two arms

Suppose we include a set of s = 1, 2, ..., S independent studies and let ysk, sesk denote the observed
mean di�erence before and after experiment and standard error in the kth arm in study s and we
model this mean di�erence by a Normal distribution:

ysk ∼ Normal(αsk, precsk) (5)

The precision required by JAGS is computed as follows:

precsk = 1/(sesk)
2

where the standard error of a sample (size n) is the sample standard deviation divided by
√
n.

The link function between case and control arm is presented below:

αs1 = αs0 + δs (6)
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where αs1, αs0 represent mean di�erence before and after experiment for case and control arm,
respectively.

However, when covariates are observed (cases where meta-regression needs to be used), the
parameter αs0 is modelled by including covariate information and the link function (equation 6) still
holds:

αs0 = γs0 + βX + δs

where X (i.e. X0, X1, X2, . . . , XJ) and β (i.e. β0, β1, β2, . . . , βJ) are de�ned exactly the same as
introduced before in the binary data section.

Similarly, di�erent assumptions for �xed- and random-e�ects models are applied here:

δs = δ Fixed-e�ects model

δs ∼ Normal(µ, σ2) Random-e�ects models

where δ and µ are the pooled mean di�erence between case and control arm for �xed- and random-
e�ects models, respectively; σ is the standard deviation between studies when random-e�ects models
are applied. The study-speci�c mean di�erence for random-e�ects models is represented by δs.

The model is completed by giving priors to some model parameters and again, for all the meta-
regression models, vague priors for the vector of regression parameters of interest, β0, β1, β2, . . . , βJ ,
are assigned as (2).

For �xed-e�ects meta-analysis, the priors are speci�ed as below:

αs0 ∼ Normal(0, 0.0001) (7)

δ ∼ Normal(0, 0.0001) (8)

While the prior for δ is the same, we now need to include prior for γs0 instead for �xed-e�ects
meta-regression :

γs0 ∼ Normal(0, 0.0001) (9)

For random-e�ects meta-analysis, αs0 is still modelled according to (7), however, as we allow
a distribution of true e�ect, vague priors for µ and σ need to be speci�ed:

µ ∼ Normal(0, 0.0001)

σ ∼ Uniform(0, 10)

Users would expect that the only di�erence between random-e�ects meta-regression and
the above regression model is that a vague prior for γs0 is assigned rather than for αs0, which can
be referred to (9). The assumptions for the above models are that there is no exposure/intervention
e�ect for the case arm and we do not observe any change in mean for the control group compared
with the baseline.

1.2.2 Modelling approach for studies reporting mean di�erence and variance

In this section, we discuss models for studies that only report mean di�erence and variance. Suppose
there are still s = 1, 2, ..S studies included. Let ys, precs denote the observed mean di�erence
between case and control arm and precision (inverse of variance) for study s.

Users need to ensure that the variance used here is the sum of variances for case and control
group and do not confuse with the concept of the pooled sample variance S2

pooled because only with

9



the assumption of homogeneity of variance (i.e. σ0=σ1=σ) in the two arms, the variance σ2s for study
s can be computed as:

σ2s =
n0 + n1
n0n1

S2
pooled

where n0 and n1 are number of individuals in control and case group.
A Normal distribution is still used to model the observed mean di�erence:

ys ∼ Normal(δs, precs)

where δs represents the `true' mean di�erence between case and control group. Thus,

δs = µ Fixed-e�ects model

δs ∼ Normal(µ, σ2) Random-e�ects models

where µ is the pooled mean di�erence for both types of models, σ is the between-study standard
deviation and only exists when a random-e�ects model is used.

However, in cases where covariates are observed:

δs = αs + βX

αs = α Fixed-e�ects model

αs ∼ Normal(µ, σ2) Random-e�ects models

where αs is the study-speci�c `true' mean di�erence and is equal to α for �xed-e�ects models as
all the studies are assumed to measure the same e�ect; µ and σ are de�ned exactly the same as
above in the meta-analysis; X is the covariate matrix and β is the vector of regression parameters of
interest. We include vague priors for the vector of regression parameters of interest, β0, β1, β2, . . . , βJ ,
according to (2) for all the meta-regression models.

For �xed-e�ects meta-analysis, the prior is speci�ed as below:

µ ∼ Normal(0, 0.0001)

Whereas for �xed-e�ects meta-regression , the prior is replaced by:

α ∼ Normal(0, 0.0001)

The two random-e�ects models require the same priors:

µ ∼ Normal(0, 0.0001)

σ ∼ Uniform(0, 10)

The assumption for the models introduced here is that there is no intervention e�ect on the case
arm comparing with the control arm.

1.2.3 Independence model

The independent model (without pooling e�ects) using Bayesian methods is developed to examine
results for individual studies separately. For continuous data, there are two independent models due
to the di�erences in the reporting format of various studies. For studies reporting information on
both arms separately, the observed mean and standard errors in both arms are still modelled by
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(5). However, a new parameter diffs is introduced to model the mean di�erence between case and
control group.

µ0s ∼ Normal(0, 0.0001)

µ1s ∼ Normal(0, 0.0001)

diffs = µ1s − µ0s

The prior for µ0s, µ1s is fairly vague with zero mean and large variance. As no link function exists
between µ0s and µ1s, there is no pooling e�ect in this model.

For studies that report mean di�erence and variance only, the `null' model is slightly di�erent:

ys ∼ Normal(µs, 1/precs)

µs ∼ Normal(0, 0.0001)

where ys represents the observed mean di�erence and µs is introduced to model the `true' mean
di�erence between case and control group for each study. Again, we use vague prior for this model
parameter.

1.2.4 Examples

In this section, we use a dataset `IVF' as an example to specify how our models for continuous data
work. We aim at comparing the e�ects of two di�erent treatments (luteal long agonist and GnRH
antagonists) on ovarian stimulation in women with polycystic ovary syndrome (PCOS). Suppose
that random-e�ects meta-analysis for studies reporting information of two arms and
random-e�ects meta-analysis for studies reporting mean di�erence and variance only

are selected as our modelling framework for this dataset. The data structure of IVF in csv �le is
shown below:

study year y1 se1 y0 se0
1 Hwang 2004 17.60 1.2043325 16.30 1.280000
2 Ashrafi 2005 6.17 0.9466112 10.96 1.820734
3 Ensieh 2010 10.88 1.0673498 13.37 1.371455
4 Agha 2010 8.56 0.5784635 11.95 1.103335
5 Kim 2012 14.20 0.5714910 14.70 0.566022
6 Bulent 2012 17.11 0.7488067 18.11 1.037960

Columns 4-7 are the minimum information users need to provide for random-e�ects meta-

analysis for studies reporting information of two arms to work properly, including mean
and standard errors of both arms. In cases where standard deviations rather than standard errors
are observed, data transformation is necessary and standard error is calculated as standard deviation
divided by the square root of the number of individuals in that arm. This computation procedure
can be implemented by either Excel or R.

We then format the data and specify the model for bmeta to generate output:

> data = read.csv("Data -ctns.csv")
> data.list <- list(y0=data$y0 ,y1=data$y1 ,se0=data$se0 ,se1=data$se1)
> x <- bmeta(data=data.list ,outcome ="ctns",model="std.ta",type="ran")
> x

The output printed by bmeta is shown below:

Inference for Bugs model at "model.txt", fit using jags ,
2 chains , each with 10000 iterations (first 5000 discarded),
n.thin = 5 n.sims = 2000 iterations saved

mu.vect sd.vect 2.5% 97.5% Rhat n.eff
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alpha0 [1] 17.122 1.179 14.690 19.329 1.001 2000
alpha0 [2] 9.476 1.527 6.853 12.790 1.002 910
alpha0 [3] 13.028 1.140 10.688 15.244 1.004 490
alpha0 [4] 11.331 1.048 9.450 13.519 1.001 2000
alpha0 [5] 14.858 0.544 13.792 15.909 1.001 2000
alpha0 [6] 18.297 0.891 16.576 20.041 1.002 880
alpha1 [1] 16.828 1.113 14.644 19.021 1.001 1600
alpha1 [2] 6.598 0.909 4.779 8.309 1.001 2000
alpha1 [3] 11.048 0.965 9.123 12.832 1.001 2000
alpha1 [4] 8.728 0.567 7.633 9.854 1.005 350
alpha1 [5] 14.027 0.547 12.981 15.140 1.001 2000
alpha1 [6] 17.032 0.706 15.688 18.364 1.001 2000
delta [1] -0.295 1.453 -2.673 2.882 1.001 1800
delta [2] -2.878 1.657 -6.644 -0.220 1.002 910
delta [3] -1.981 1.259 -4.643 0.366 1.005 450
delta [4] -2.604 1.161 -5.050 -0.549 1.003 730
delta [5] -0.831 0.761 -2.280 0.721 1.001 2000
delta [6] -1.265 0.994 -3.180 0.748 1.002 1700
mu -1.615 1.125 -4.053 0.723 1.001 2000
tau.delta 320.324 5367.733 0.028 62.911 1.031 110
deviance 33.663 4.625 25.921 43.572 1.004 410

For each parameter , n.eff is a crude measure of effective
sample size , and Rhat is the potential scale reduction
factor (at convergence , Rhat =1).
DIC info (using the rule , pD = var(deviance)/2)
pD = 10.7 and DIC = 44.3
DIC is an estimate of expected predictive error (lower
deviance is better).

All parameters in this table exactly correspond to the model parameters introduced in the pre-
vious section. The parameters alpha0[] and alpha1[] represent the study-speci�c mean for control
and case arm, respectively and the pooled mean di�erence, mu, is −1.615 with a 95% CrI (−4.053,
0.723). The between study variance is the inverse of tau.delta, which equals to 0.003 and is very
small.

Using the previous example again but this time, we implement the other type of model�
random-e�ects meta-analysis for studies reporting mean di�erence and variance only .
Suppose now only mean di�erence between two arms and variance are retrieved (we need to convert
variance into precision �rst, which is computed as the inverse of variance):

study year y var prec
1 Hwang 2004 1.30 3.0888167 0.3237486
2 Ashrafi 2005 -4.79 4.2111455 0.2374651
3 Ensieh 2010 -2.49 3.0201244 0.3311122
4 Agha 2010 -3.39 1.5519691 0.6443427
5 Kim 2012 -0.50 0.6469829 1.5456359
6 Bulent 2012 -1.00 1.6380733 0.6104733

In the next step, we format the data and call bmeta to perform analysis:

> data = read.csv("Data -ctns.csv")
> data.list <- list(y=data$y ,prec=data$prec)
> x <- bmeta(data=data.list ,outcome ="ctns",model="std.mv",type="ran")
> x

Below is the summary table produced by bmeta:

Inference for Bugs model at "model.txt", fit using jags ,
2 chains , each with 10000 iterations (first 5000 discarded),
n.thin = 5 n.sims = 2000 iterations saved

mu.vect sd.vect 2.5% 97.5% Rhat n.eff
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delta [1] -0.335 1.435 -2.728 2.889 1.002 2000
delta [2] -2.795 1.654 -6.648 -0.307 1.004 450
delta [3] -1.964 1.279 -4.834 0.424 1.001 2000
delta [4] -2.520 1.120 -4.733 -0.568 1.007 240
delta [5] -0.846 0.766 -2.321 0.708 1.003 570
delta [6] -1.248 1.012 -3.186 0.943 1.001 2000
mu -1.608 1.095 -3.881 0.489 1.001 2000
tau.delta 50.187 852.105 0.034 165.473 1.003 740
deviance 22.003 3.268 16.603 29.019 1.008 200

For each parameter , n.eff is a crude measure of effective
sample size , and Rhat is the potential scale reduction
factor (at convergence , Rhat =1).
DIC info (using the rule , pD = var(deviance)/2)
pD = 5.3 and DIC = 27.3
DIC is an estimate of expected predictive error (lower
deviance is better).

Apparently, the two random-e�ects model generate similar results (−1.608 in the current table
and −1.615 in the previous one), which is expected as the same dataset is analysed. Compared
with the previous model, the current one require fewer model parameters, therefore, the Deviance
Information Criteria (DIC) of the current model is much smaller.

1.3 Models for count data

Apart from a `null' model, there are 6 models in bmeta for count data, with 3 models for meta-analysis
and another 3 for meta-regression. It should be noted that bmeta produces a pooled estimate (and
95% Credible Interval, CrI) in the form of incidence rate ratio (IRR).

1.3.1 Modelling approach for meta-analysis

The model structure for count data is di�erent from that for binary and continuous data as count
data are generally �tted by a Poisson distribution. Suppose there are s = 1, 2, ..., S independent
studies included and the total number of events in the follow-up period (measured by person-time)
is observed for both the case and control arm. Let ysk, psk denote the number of events and total
follow-up person time, respectively, for kth arm in sth study. A Poisson distribution is used to model
the event rate:

ysk ∼ Poisson(λsk) (10)

where λsk is the expectation of ysk.
A log transformation for λsk is applied here, which not only re�ects the multiplicative e�ects

of event rate and follow-up person-time, but also make the transformed variables more closely
approximate to the assumption for linear regression model (i.e. normally distributed residuals):

log(λsk) =

{
ξs + log(ps), if k=0 (control arm)

ξs + log(ps) + δs, if k=1 (case arm)

where ξs is the event rate for the control arm in sth study and δs is the study-speci�c intervention
e�ect. Notice that these two parameters are all on a log scale.

If covariate e�ects exist:

ξs0 = θs + βX
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where ξs0 is the event rate for controls including covariate e�ects whereas θs is considered to be the
`true' baseline event rate for control arm (both on log scale); β (vector of regression parameters of
interest) and X (covariate matrix) are de�ned exactly the same as in other meta-regression models.

As model assumptions for �xed- and random-e�ects models di�er, the following equations hold:

δs = δ Fixed-e�ects model

δs ∼ Normal(µ, σ2) Random-e�ects models

where δ and µ are the pooled log incidence rate ratio (IRR) for �xed- and random-e�ects models,
respectively. The pooled IRR on natural scale is then equal to exp(δ) for �xed-e�ects models and
exp(µ) for random-e�ects models. The study-speci�c IRRs only exist when random-e�ects models
are applied and is computed as exp(δs) (δs on log scale).

We include minimally informative priors for regression parameters of interest (β1, β2, ...βJ) ap-
plied in all other meta-regression models, which can be referred to (2). It should be noted that
bmeta provides two types of prior for modelling count data when random-e�ects models are selected,
namely, Uniform and half-Cauchy prior.

All the �xed-e�ects models (i.e. �xed-e�ects meta-analysis, �xed-e�ects meta-regression)
designed for count data include the same prior for the pooled estimate δ:

δ ∼ Normal(0, 0.0001)

However, for �xed-e�ects meta-analysis, we include vague prior for ξs0:

ξs0 ∼ Uniform(−5, 5) (11)

Whereas for �xed-e�ects meta-regression , the same prior needs to be speci�ed for θs instead:

θs ∼ Uniform(−5, 5) (12)

Notice that as the log scale is used, this Uniform prior actually indicates that the event rate
for the control group ranges from e−5 to e5 after transforming back to natural scale, which is very
vague. The assumptions for the priors introduced above are that we do not expect any e�ect of
exposure on the case arm and for control arm, the event rate can range from close to zero to in�nity.

It is also worth commenting that for all the random-e�ects models, a common vague prior for µ
is given:

µ ∼ Normal(0, 0.0001)

Moreover, for random-e�ects meta-analysis with uniform prior and random-e�ects

meta-analysis with half-Cauchy prior , the prior for ξs0 is still based on (11). However, for the
�rst model, we include a Uniform prior for the between-study standard deviation σ:

σ ∼ Uniform(0, 10) (13)

whereas for the latter model, a half-Cauchy prior is given for the same parameter:

σ =
|Zσ|√
εσ

(14)

Zσ ∼ Normal(0, σ2Zσ
) (15)

εσ ∼ Gamma(0.5, 0.5) (16)

σ2Zσ
=

1

B2
σ

(17)

Bσ ∼ Uniform(0, 0.5) (18)
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We introduce the half-Cauchy prior because in the previous model, σ is assumed to follow a
Uniform distribution and this potentially indicates a problem: the simulation process is likely to be
largely in�uenced by k where k is the upper bound of a Uniform distribution, i.e. Uniform(0,k). With
its heavier tail, the half-Cauchy distribution allows for outliers and accommodates small variances
close to zero.

Finally, for random-e�ects meta-regression with uniform prior and random-e�ects

meta-regression with half-Cauchy prior , in addition to prior for the pooled estimate µ, we
still include prior for θs according to (12). Users would expect that the only di�erence in priors as-
signed for these two models is in terms of σ, which can be referred to (13) and (14-18), respectively.

1.3.2 Independence model

The independent model (without pooling e�ects) using Bayesian methods is developed to exam-
ine results for individual studies separately. While the events are still modelled using a Poisson
distribution based on (10), the link function between the two arms does not exist.

ξ0s, ξ1s
iid∼ Uniform(−5, 5)

IRRs = exp(log(ξ1s)− log(ξ0s))

log(IRRs) = log(ξ1s)− log(ξ0s)

The incidence rate ratio IRRs (or on log scale) is compared between the two arms.

1.3.3 Examples

In this section, we use a dataset `COPD' as an example to specify how our models for count data
work. We aim at investigating the e�ects of LAMS treatment (versus placebo) on the exacerbation
counts of chronic obstructive pulmonary disease (COPD). Suppose that random-e�ects meta-

regression with half-Cauchy prior is selected as our modelling framework for this dataset.
The data structure of COPD in csv �le is shown below.

> data
Study year y0 p0 y1 p1

1 Ambrosino 2008 26 49.52 19 49.52
2 Bateman 2010a 1247 653.00 623 670.00
3 Bateman 2010b 1568 1802.81 1235 1789.89
4 Brusasco 2003 298 200.00 215 201.00
5 Casaburi 2002 352 371.00 418 550.00
6 Chan 2007 259 281.52 494 561.18
7 Cooper 2010 194 415.35 208 441.19
8 Donaldson 2012 111 52.00 47 48.00
9 Donohue 2010 150 209.00 110 207.50
10 Dusser 2006 862 510.00 550 500.00
11 Freeman 2007 44 37.39 23 42.00
12 Niewoehner 2005 480 457.50 388 457.00
13 Powrie 2007 134 73.00 60 69.00
14 Tashkin 2008 10220 12024.00 8719 11944.00
15 Tonnel 2008 395 216.00 209 199.50

Columns 2-3 specify the study characteristics and Columns 4-7 present the observations from
each study, which need to be used to populate the model. Notice that the total follow-up person-
time for an arm is simply calculated as the total number of person times the total follow-up period
in that arm.

We then format the data and call bmeta to perform analysis:
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> data= read.csv("Data -count.csv")
> data.list <- list(y0=data$y0 ,y1=data$y1 ,p0=data$p0 ,p1=data$p1)
> x <- bmeta(data=data.list ,outcome ="count",model="std.hc",type="ran")
> x

Below is the output table obtained:

Inference for Bugs model at "model.txt", fit using jags ,
2 chains , each with 10000 iterations (first 5000 discarded),
n.thin = 5 n.sims = 2000 iterations saved

mu.vect sd.vect 2.5% 97.5% Rhat n.eff
IRR 0.695 0.049 0.601 0.795 1.002 2000
delta [1] -0.348 0.192 -0.743 0.033 1.001 2000
delta [2] -0.706 0.048 -0.804 -0.611 1.001 2000
delta [3] -0.237 0.039 -0.312 -0.163 1.001 2000
delta [4] -0.335 0.087 -0.511 -0.165 1.001 2000
delta [5] -0.233 0.072 -0.374 -0.092 1.002 1200
delta [6] -0.073 0.074 -0.218 0.074 1.002 1100
delta [7] -0.049 0.095 -0.244 0.135 1.001 2000
delta [8] -0.640 0.148 -0.943 -0.361 1.003 500
delta [9] -0.318 0.113 -0.545 -0.097 1.001 2000
delta [10] -0.425 0.053 -0.529 -0.323 1.002 2000
delta [11] -0.556 0.183 -0.927 -0.218 1.001 2000
delta [12] -0.222 0.066 -0.350 -0.093 1.002 1200
delta [13] -0.634 0.132 -0.908 -0.382 1.002 1400
delta [14] -0.153 0.014 -0.181 -0.125 1.001 2000
delta [15] -0.536 0.081 -0.698 -0.381 1.001 2000
gamma [1] 0.719 0.140 0.476 1.034 1.001 2000
gamma [2] 0.494 0.024 0.448 0.543 1.001 2000
gamma [3] 0.789 0.030 0.732 0.850 1.001 2000
gamma [4] 0.718 0.062 0.600 0.848 1.001 2000
gamma [5] 0.794 0.057 0.688 0.912 1.002 1200
gamma [6] 0.933 0.069 0.804 1.077 1.002 1100
gamma [7] 0.957 0.091 0.784 1.145 1.001 2000
gamma [8] 0.533 0.079 0.389 0.697 1.003 500
gamma [9] 0.732 0.083 0.580 0.907 1.001 2000
gamma [10] 0.655 0.035 0.589 0.724 1.002 2000
gamma [11] 0.583 0.106 0.396 0.804 1.001 2000
gamma [12] 0.803 0.053 0.705 0.911 1.002 1200
gamma [13] 0.535 0.070 0.403 0.683 1.002 1400
gamma [14] 0.859 0.012 0.834 0.883 1.001 2000
gamma [15] 0.587 0.047 0.497 0.684 1.001 2000
lambda0 [1] 26.365 4.414 18.590 35.747 1.001 2000
lambda0 [2] 1240.876 36.175 1173.622 1311.805 1.001 2000
lambda0 [3] 1571.858 39.859 1494.476 1650.800 1.001 2000
lambda0 [4] 298.655 16.713 266.903 332.350 1.001 2000
lambda0 [5] 354.024 18.667 319.584 393.143 1.003 700
lambda0 [6] 263.992 16.012 232.795 296.331 1.002 960
lambda0 [7] 199.781 13.716 173.828 227.643 1.001 2000
lambda0 [8] 106.013 10.064 87.474 126.101 1.000 2000
lambda0 [9] 150.702 11.896 128.050 175.792 1.002 1700
lambda0 [10] 859.586 28.700 804.886 915.314 1.002 1200
lambda0 [11] 40.750 5.858 30.746 53.164 1.001 2000
lambda0 [12] 482.546 21.329 440.681 524.530 1.001 1500
lambda0 [13] 128.853 10.992 108.531 151.444 1.001 2000
lambda0 [14] 10220.067 102.120 10029.084 10425.303 1.003 670
lambda0 [15] 391.724 19.431 355.894 432.160 1.001 2000
lambda1 [1] 18.679 3.535 12.488 26.171 1.001 2000
lambda1 [2] 628.538 24.216 580.875 676.311 1.001 2000
lambda1 [3] 1231.074 35.841 1161.709 1302.374 1.001 2000
lambda1 [4] 214.929 14.778 186.336 245.057 1.001 2000
lambda1 [5] 415.615 20.161 377.441 455.778 1.001 2000
lambda1 [6] 489.024 21.481 447.026 532.795 1.001 2000

16



lambda1 [7] 202.135 13.958 175.735 229.942 1.001 2000
lambda1 [8] 51.797 6.555 39.631 65.391 1.005 390
lambda1 [9] 108.954 9.759 90.609 127.546 1.001 2000
lambda1 [10] 551.270 22.724 508.664 598.171 1.001 2000
lambda1 [11] 26.338 4.302 18.636 35.471 1.001 2000
lambda1 [12] 386.211 19.268 350.014 425.179 1.001 2000
lambda1 [13] 64.756 7.207 51.748 79.736 1.003 640
lambda1 [14] 8715.651 93.364 8531.931 8899.159 1.006 330
lambda1 [15] 211.949 14.103 185.401 240.948 1.001 2000
mu -0.366 0.070 -0.508 -0.230 1.002 2000
tau.delta 19.308 8.948 6.963 41.924 1.001 2000
deviance 254.157 7.823 240.854 271.611 1.001 2000

For each parameter , n.eff is a crude measure of effective sample
size , and Rhat is the potential scale reduction factor (at
convergence , Rhat =1).
DIC info (using the rule , pD = var(deviance)/2)
pD = 30.6 and DIC = 284.8
DIC is an estimate of expected predictive error (lower deviance
is better).

All parameters in this table exactly correspond to the model parameters introduced in the pre-
vious section. The study-speci�c incidence rate ratios are represented by gamma[] while the pooled
incidence rate ratio (IRR) is 0.695 with a 95% CrI (0.601,0.795).
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2 Graphical summaries

In this section, we discuss the graphing functions of bmeta and show some sample coding and plots.
Notice that bmeta not only produces plots that display summary from modelling in a standard
format (i.e. posterior distribution plot and forest plot) but also some other diagnostic plots which
examine the model �t and performance.

Table 2: Plots produced by bmeta
Plots Function

posterior.plot Posterior distribution plot of the summary estimate and between-
study standard deviation

forest.plot Graphical display of study-speci�c estimates and the pooled estim-
ate. Need to install package `forestplot' from R library to implement
command

funnel.plot Scatter plot to present publication bias
diag.plot Diagnostic plot to present Gelman-Rubin statistic (Rhat) or e�ective

sample size from MCMC simulations
traceplot.bmeta Trace plot to examine the model convergence for each node
acf.plot Autocorrelation plot to examine model convergence for each node

2.1 Posterior distribution plots

As all models included in bmeta employ entirely Bayesian methods, it is natural to examine the
pooled estimates by looking at their posterior distributions, which is basically a plot of pooled
estimate obtained from posterior distribution against density (the area represented by all the bars
adds up to 1). For binary and count data, users have the option to select whether to display the
summary estimate on log (scale="log") or natural scale (scale="exp"). When log scale (for binary
and count data only) is used, a vertical reference line x = 0 is added whereas when natural scale
is selected, the reference line is x = 1. Therefore, whether the experiment favours intervention or
control is clearly exhibited in both ways. Moreover, there is a horizontal line in bold to show the 95%
credible interval of the pooled estimate. Users may need to adjust the scale of x−axis for the plot to
look more decent and the argument `xlim' is designed with this function. If it is not speci�ed, bmeta
automatically uses a scale of (−3, 3) for binary and count data and a scale of (−5, 5) for continuous
outcome. Additional arguments that can be used include `xlab' and `main', which enable users to
change the label of the x−axis and the title of the plot, respectively.

Moreover, the posterior plot for between-study standard deviation (SD) is also provided by
implementing the argument heterogeneity=T and this argument can be used only for random-
e�ects models. Notice that for binary data, the between-study SD is on a logit scale whereas for
count data, it is on a log scale. However, no matter what scale is used, it is expected that there is
low heterogeneity when between-study SD is close to zero whereas the heterogeneity is high when
between-study SD is close to in�nity.

Suppose we use the sample dataset for binary outcome introduced previously as an example
and by typing the following command after executing bmeta(. . . ) (suppose random-e�ects meta-
analysis with normal prior is used here), we get Figure 1.

> ### Posterior plot on log scale with a limit for x-axis set at (-2,2)
> posterior.plot(x,xlim=c(-2,2))
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Posterior distribution Plot
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Figure 1: Posterior distribution for pooled log odds ratio

In the above plot, as the scale is not speci�ed, the log scale (for binary and count data only) is
automatically used by bmeta, with a vertical reference line x = 0 added. However, if the natural
scale is preferred, then the following command needs to be executed and the correct label for the
x-axis is `pooled odds ratio' (see Figure 2).

> ### Posterior plot on natural scale with label and adjusted scale for x-axis
> posterior.plot(x,scale="exp",xlab=" pooled odds ratio",xlim=c(0 ,2.5))

In the above two graphs, the relative likelihood for summary estimate to take on a given value
sampled from the posterior distribution is exhibited, with the maximum likelihood of a certain value
indicated by the highest `bar'. It can be concluded that for this dataset, the experiment tends to
favour intervention as the maximum likelihood value of the summary estimate as well as its 95%
CrI (represented by the bold line) locates almost entirely to the left of the vertical reference line
regardless of what scale is used.

Suppose we further want to examine the heterogeneity between studies and by programming the
following code, Figure 3 is created. This plot indicates that the 95% CrI of the between-study SD
is (0.3, 1.5), which is reasonably small. If the maximum likelihood of the between-study SD is very
close to zero with a narrow 95% CrI, this may suggest that the heterogeneity between studies are
small enough to allow us to switch to �xed-e�ects models instead.

> ### Posterior plot to examine heterogeneity between studies
> posterior.plot(x,heterogeneity=T,xlim=c(0,3),xlab="between -study standard

deviation ")
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Figure 2: Posterior distribution for pooled odds ratio

Posterior distribution Plot

between−study standard deviation

de
ns

ity

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

Figure 3: Posterior plot to examine heterogeneity between studies
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2.2 Forest plot

Forest plot has been considered to be the standard plot for graphical illustration of output generated
from meta-analysis. In a forest plot, a study-speci�c estimate is normally represented by either a box
or a circle, which is displayed somewhere on a line that represents the 95% Credible Interval (CrI) of
the estimate. The summary estimate is drawn like a diamond and a vertical reference line is added
to show whether the outcome favours intervention or control. As the Bayesian �xed-e�ects models
do not provide study-speci�c estimates, estimates from independence models are used and displayed
on the forest plot for all �xed-e�ects models. It should be noted that bmeta calls the R package
`forestplot' to produce graphs, therefore, users need to ensure that the package `forestplot' is
installed (this is automatically done when installing bmeta from CRAN). The argument options for
forest plot are listed in Table 3.

Table 3: Argument options for forest plot
Argument Function

x A bmeta object with results
title Title of the plot
xlab Label of the x-axis
log Results displayed on log scale (TRUE) or natural scale (FALSE), FALSE

by default
add.null Whether to display results from `null' model or not, only available for

random-e�ects models, FALSE by default
study.label Labels for each individual studies and summary estimate
clip Lower and upper limits for clipping credible intervals to arrows
lines Select the colour for the lines of the intervals
box Select the colour for the mean estimates
summary Select the colour for the summary estimate
box.symb Select the symbol used to plot the mean. Options are �box" (default) or

�circle"
lab.cex De�ne the size of the text for the label. Defaults at 0.8 of normal size
xlab.cex De�ne the size of the text for x-label. Defaults at 1 of the normal size
ticks.cex De�ne the size of the text for the x-axis ticks. Defaults at 0.8 of the normal

size
. . . Other arguments

We use the sample dataset for count outcome introduced previously as an example and by typing
the following command after executing bmeta(. . . ), a basic forest plot is created (Figure 4).

> forest.plot(x)

The boxes representing study-speci�c estimates may be a bit too large and we can make them
smaller by using the argument `boxsize' (see Figure 5).

> ### Forest plot with a smaller boxsize
> forest.plot(x,boxsize =0.2)

However, we may further want to add study characteristics (i.e. author, year) and label the graph
using a proper title. These can be achieved by executing the following codes, which produces Figure
6.

> ### Forest plot with a smaller boxsize , study label and title of the plot
> forest.plot(x,boxsize =0.2, study.label=c(paste0(data$study ,",", data$year),"

Summary estimate "),title=" Forest plot for count data")
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Figure 4: Forest plot for count data (pooled incidence rate ratio)
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Figure 5: Forest plot for count data (pooled incidence rate ratio)
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Figure 6: Forest plot for count data (pooled incidence rate ratio)

If users want results to be presented on a log scale rather than a natural scale, then use the
argument `log=T' and Figure 7 is what users can expect.

> ### Forest plot presenting results on log scale
> forest.plot(x,boxsize =0.2, study.label=c(paste0(data$study ,",", data$year),"

Summary estimate "),title=" Forest plot for count data",log=T)

For random-e�ects models, bmeta also produces a two-line forest plot so that results from mod-
elling and no-pooling e�ects model are displayed on the same graph. This plot can be used to
examine whether the observed study-speci�c estimates before pooling are reasonably close to that
after modelling. If there are huge di�erences between study-speci�c estimates before and after mod-
elling, we may suspect that substantial amount of heterogeneity exits among distinct studies and
thus consider if it makes sense to pool them together. By adding the argument `add.null=T' to the
previous command, Figure 8 is created.

> ### Two line forest plot presenting results from modelling and no-pooling
effects model

> forest.plot(x,boxsize =0.2, study.label=c(paste0(data$study ,",", data$year),"
Summary estimate "),title="Two line forest plot for count data",add.null=T)

The distances between the two lines can be adjusted to make the graph look more decent by
using the argument line.margin. We may also want the `lines' and `boxes' to be shifted rightwards
so the main information is more centred. This can be achieved by resetting the lower and upper
limits for clipping credible intervals to arrows (i.e. use the argument clip=c(. . . )). The following
command produces Figure 9. This plot indicates that estimates from the no-pooling e�ects model
and random-e�ects model are reasonably close for the majority of the studies included. Therefore,
it seems sensible to obtain a pooled estimate from these studies.

> ### Two line forest plot with adjusted line.margin
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Figure 7: Forest plot for binary data (pooled log incidence rate ratio)
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Figure 8: Two line forest plot for count data (pooled incidence rate ratio)
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> forest.plot(x,boxsize =0.2, study.label=c(paste0(data$study ,",", data$year),"
Summary estimate "),title="Two line forest plot for count data",add.null=T,
line.margin =0.25, clip=c(0 ,1.5))
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Figure 9: Two line forest plot for count data (pooled incidence rate ratio)

2.3 Funnel plot

Funnel plot is commonly used to examine publication bias and it is a scatter plot of study e�ect
against some measure of study size. The funnel plot function in bmeta displays study e�ect on log
scale against the standard error of the study e�ect. The e�ect estimates from smaller studies are
often observed to scatter widely at the bottom because spontaneous estimates and larger standard
errors are more likely to be expected. While the spread of e�ect estimates from larger studies should
be narrower as results are less likely to be obtained by chance. It is suggested that when bias and
between-study heterogeneity are completely absent, the scatter resembles a symmetrical funnel and
the triangle area formed by connecting the centred summary estimate with its 2.5% and 97.5%
quantiles on either side includes about 95% of the studies if the �xed-e�ects model assumption holds
(i.e. all the studies estimate the same e�ect).

The study-speci�c estimates for all types of models to be displayed in a funnel plot are obtained
from the independence models. As the publication bias needs to be examined based on �xed-e�ects
model assumption, it is aware that the summary estimate is readily usable only when users se-
lect �xed-e�ects models. However, bmeta overcomes this issue by implementing the corresponding
�xed-e�ects models at background to obtain the pooled estimate for all the random-e�ects mod-
els. For example, if users select random-e�ects meta-analysis with normal prior, then �xed-e�ects
meta-analysis with normal prior is implemented at background. The four arguments to control the
presentation of the plot are `xlim',`xlab',`ylab' and `title', which is to large extent self-explanatory.
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By programming the following codes, a basic funnel plot is obtained (see Figure 10) based on
the results from dataset for binary outcome. Notice that users can easily change the title and label
for x− and y−axis (i.e. xlab="study effect").

> ### Funnel plot
> funnel.plot(x)

We can further adjust the x-axis by using the argument xlim to make the plot look more decent
(see Figure 11).

> ### Funnel plot
> funnel.plot(x,xlim=c(-2,1))

It is indicated that the scatter is approximately symmetrical with two dots lying outside the
triangle, suggesting some extent of violation of the �xed-e�ects model assumption. However, if
severe asymmetry of the plot is observed (i.e. arise from heterogeneity, reporting bias or chance),
further investigation of possible causes is strongly recommended as the appropriateness of a simple
meta-analysis is doubted.
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Figure 10: Funnel plot
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Figure 11: Funnel plot with adjusted x-axis

2.4 Diagnostic plot

Apart from the above 3 plots which provide graphical summary of modelling output, bmeta also
produces some other plots for assessing model �t and performance. The diagnostic plot is designed
to examine the convergence for model parameters. Both the Gelman-Rubin statistic and the e�ective
sample size can be selected as the diagnostic criteria. It is suggested that a large Gelman-Rubin
statistic and a small e�ective sample size (i.e. much smaller than the actual number of simulated
iterations) may indicate problems of convergence for parameters. The diagnostic plot is simply
implemented by the following codes:

> ### Diagnostic plot displaying Gelman -Rubin statistics (by default)
> diag.plot(x)

> ### Diagnostic plot displaying effective sample size
> funnel.plot(x,"n.eff")

The �rst command generates Figure 12 where the Gelman-Rubin statistic (Rhat) is used as diagnostic
statistics whereas the second plot (Figure 13) shows the number of e�ective simulated iterations
against the total number of simulations (represented by dash line at the top) for each parameter.
These plots display diagnostic statistics for all the model parameters. Notice that if not speci�ed,
the Gelman-Rubin statistic is set as the default option for this plot.

The interpretation of the plots is as follows: for the Gelman-Rubin statistic, there is a cut-
o� point of 1.1, values below which indicate convergence of the MCMC procedure to the target
posterior distributions. Similarly, the e�ective sample size is computed as the equivalent number
of independent samples that the MCMC runs produce (this is because the MCMC samples tend
to be correlated and so to observe 1000 points may not produce the same information as 1000
independent values from a distribution). Thus, the lower the value (in comparison to the actual
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number of iterations saved to produce the summary statistics), the more relevant the presence of
autocorrelation in the procedure.

Notice that, in general, some of the monitored nodes may be deterministic and so may be
associated with an e�ective sample size of exactly 1. In other cases, while the Gelman-Rubin
statistic suggests convergence for a given node, the e�ective sample size may not be very large.
This would perhaps indicate the need of running the simulation procedure for a larger number of
iterations on which the summary statistics can be based. In addition, these diagnostic plots can be
used in conjunction with the trace plots, which we describe next.
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Figure 12: Diagnostic plot based on Gelman-Rubin statistics

28



●
●

●
●

●

●

●
●

● ● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ● ●

●

0 5 10 15 20 25 30

0
50

0
10

00
15

00
20

00

Convergence diagnostics

Parameters

E
ffe

ct
iv

e 
sa

m
pl

e 
si

ze

alpha[1]
alpha[2]

alpha[3]
alpha[4]

alpha[5]

alpha[6]

alpha[7]
alpha[8]

alpha[9]delta[1]delta[2]

delta[3]

delta[4]

delta[5]

delta[6]

delta[7]

delta[8]

delta[9]

deviance

gamma[1]gamma[2]

gamma[3]

gamma[4]

gamma[5]

gamma[6]

gamma[7]

gamma[8]

gamma[9]murho

tau.delta

Figure 13: Diagnostic plot based on e�ective sample size

2.5 Trace plot

A plot of the sampled values versus the simulation index (termed a "trace plot") is considered to be
very e�ective for assessing Markov Chain convergence for model parameters. It allows users to see if
the chain has converged to a stationary distribution, in other words, if the chain still needs a longer
burn-in period to achieve convergence. Moreover, one can tell whether a chain is mixing well, that
is, the chain can traverse the posterior space rapidly by jumping from one to another remote region
in the posterior in few steps. The `perfect' trace plot can be described as that the chain appears to
�uctuate around a certain value with small deviations, indicating a right distribution of the chain
may have been obtained. Trace plot in bmeta can be produced easily by the following codes (the
second argument speci�es the model parameter for graphical display):

> ### Trace plot of model parameter alpha [1]
> traceplot.bmeta(x,"alpha [1]")

A typical trace plot of a certain node (here is alpha[1]) is displayed below. Note that the
center of the chains appear to be around a value of 0.9 for this node, with some �uctuations. This
suggests that the chains starting from di�erent initial values are mixing well and moreover, these
chains are not stuck in certain areas of the parameter space and therefore may have already reached
convergence. If bad mixing of the chains is observed, users may need to run the simulation for a
larger number of iterations until convergence is achieved, otherwise, we may doubt over the accuracy
of the posterior estimates.
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Figure 14: Trace plot

2.6 Autocorrelation plot

Autocorrelation plot is often used to check dependency among Markov chain samples. As the
distribution of the current observation always depends on that of the previous one (a critical property
of MCMC simulation), the iterations of a Markov chain are observed to be correlated. However, it
is expected that the kth lag autocorrelation (de�ned as the correlation between every draw and its
kth lag) gets smaller as k increases (i.e. the 5th and 100th draws should be less correlated than 5th
and 10th draws). Therefore, if autocorrelation continues to be high for larger values of k, we would
suspect that there is a slow mixing of chains and high degree of correlation between draws. The
following codes program the required plot (the second argument speci�es the model parameter for
graphical display):

> ### Autocorrelation plot of model parameter alpha [1]
> acf.plot(x,"alpha [1]")

A sample autocorrelation plot of a certain node (here is alpha[1]) is presented below. This plot
shows a relatively satisfactory autocorrelation as the correlation (represented by each vertical line)
between every draw of this node and its kth lag decreases when k increases and even for a small
value of k (i.e. k=5), the correlation is low (apart from the �rst one, all the rest vertical lines lie
within the border formed by the two dash lines).
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Figure 15: Autocorrelation function plot

31


