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1Introdution to health eonomi evaluation
This hapter is written by Rahael M. Hunter (Department of Primary Care andPopulation Health, UCL) and Gianlua Baio
1.1 IntrodutionIn reent years health eonomis has beome an inreasingly important disi-pline in medial researh, espeially with the transition from the paradigm ofevidene based mediine to that of translational researh (Berwik, 2005; Leanet al., 2008), whih aims at making basi researh appliable in the ontextof real pratie, and under budget onstraints, in order to enhane patients'aess to optimal health are.Sine the 1970s, health are servies have undergone dramati hanges:inreasing demand for health are has generated an inrease in the numberof available interventions, whih have sometimes been applied regardless ononsiderations about the atual quality and the osts assoiated.Consequently, deision-makers responsible for the provision of health areare inreasingly faing ritial appraisal proesses of the modality in whihthey manage the available resoures and they need to adjust the managementand the evaluation of the proesses used, with respet to some measures oflinial bene�t. The main reasons for the neessity of ontaining ost assoi-ated with health are are essentially the following:� The progressive inrease of the proportion of the �older� (above 65 years)population;� the inrease of life expetany and of the inidene of hroni and degen-erative pathologies;� the re�nement of diagnosti tehniques;� the availability of innovative health tehnologies and therapeuti toolsassoiated with better linial outomes but also with higher osts.In this perspetive, the systemati analysis of organised data provides afundamental ontribution to the identi�ation of eonomially appropriate1



2 Bayesian Methods in Health Eonomisstrategies. This in turns has helped the integration between several linialand quantitative (e.g. statistis and eonomis) disiplines, so muh that itan be reasonably argued that health eonomis is in fat a ombination ofmedial researh, epidemiology, statistis and eonomis. Figure 1.1 shows thisonept graphially and highlights the fat that health eonomis enompassesmore than the mere ost evaluations.Epidemiology Experimentalstudies Cost analysisDeisiontheory HealtheonomisCausalinferene Generalisation and integration ofstatistis, epidemiology, eonometrisand �nanial analysis
⇓How muh does it ost totreat a patient withintervention t?
⇓� Finanial analysis� Budgeting⇓FIGURE 1.1Health eonomi evaluation as the integration of di�erent disiplines. Costanalysis only represents one side of the storyIn this hapter we present some onepts that are relevant to the de�nitionand desription of health eonomi evaluations. In partiular we disuss theharateristis of the two dimensions along whih eonomi evaluations areonduted: osts and linial bene�ts. The latter an be de�ned in severaldi�erent ways, eah of whih gives rise to a spei� method of analysis. Wepresent the main ones in �1.6. Finally, we give a �rst introdution to theproblem of omparative evaluation of two or more health interventions, whihwill be disussed in more tehnial detail in hapters 3 and 5.

1.2 Health eonomi evaluationHealth eonomis an be formally desribed as the appliation of eonomitheory to health (de�ned as �a state of omplete physial, mental, and soialwell-being and not merely the absene of disease or in�rmity�; WHO, 2012)and health are, i.e. the diagnosis, treatment and prevention of disease and



24 Bayesian Methods in Health EonomisTABLE 1.4An example of alulation of QALYs from utility sores. In the two treatmentgroups (t = 0, 1), the measurements onsist of the utility sore utj and theosts ctj , for j = 0, . . . , 4 oasionsBaseline 6 12 18 24 Totalmonths months months monthsTreatment group (t = 1)Utility sore 0.656 0.744 0.85 0.744 0.744QALYs 0.350 0.399 0.399 0.372 1.519Costs ¿2 300 ¿300 ¿300 ¿300 ¿3 200Control group (t = 0)Utility sore 0.656 0.656 0.656 0.656 0.744QALYs 0.328 0.328 0.328 0.350 1.334Costs ¿300 ¿300 ¿300 ¿300 ¿1 200Di�erenein QALYs (E[∆e])a 0.185in osts (E[∆c])a ¿2 000Cost per QALYa ¿10 811
a These quantities are de�ned in �1.7where

δj =
time between measurements j and (j − 1), in years1 yearFor example, the QALYs at 6 months (i.e. at time j = 1) for treatment

t = 0 are omputed as
q01 =

(
0.656 + 0.656

2

)(
0.5

1

)
= 0.164,sine the time between the two measurements, 6 months, is only half a year.Similarly, for t = 1 the omputation gives

q11 =

(
0.656 + 0.744

2

)(
0.5

1

)
= 0.35.Overall, for eah treatment the QALYs an be omputed by summing the qtjterms aross all the time periods. In the present example, the measurementsare repeated at every 6 month intervals and thus all values are added upover the 2 years. We de�ne the QALYs using the notation et (to indiate the�e�etiveness� of the treatment) as

et =

J∑

j=1

qtj .



Introdution to health eonomi evaluation 25This produes a result of 1.519 extra QALYs for the patient under t = 1 andonly 1.334 extra QALYs for the single patient under t = 0.Notie that, in more realisti ases, instead of a single patient per group, wewould have aess to a sample of patients and therefore the relevant measureswould be the population average omputed aross all relevant individuals. �Eah of the three main types of eonomi evaluation desribed above hasstrengths and weaknesses, and although eah has their own spei� hara-teristis most eonomi evaluations generally ombine aspets of eah. Morein depth information an be found in Drummond et al. (2005). NICE's De-ision Support Unit also has extensive guidane to support tehnial ap-praisals http://www.nicedsu.org.uk/. Table 1.5 summarises the main dif-ferenes among them.TABLE 1.5A omparison of the harateristis of the main types of eonomievaluation. Adapted from Meltzer and Teutsh (1998)Type Costs inludeda OutomesDiret IndiretCost-bene�t X X Monetary unitCost-e�etiveness X often Health outomebCost-utility X rarely Utility measurec
a All future osts and bene�ts should be disounted to the referene year (fr. �1.5)
b For example: number of deaths averted
c For example: QALYs (fr. �1.6.4)

1.7 Comparing health interventionsAs disussed earlier, the purpose of eonomi evaluations is to provide infor-mation to deision-makers about the osts and outomes of health are optionsto help with resoure alloation deisions. Generally, eonomi summaries areomputed in the form of �ost-per-outome� ratios.Moreover, in order to ompare the two interventions (t = 0, 1), we an de�nesuitable inremental population summaries, suh as the population averageinrement in bene�ts, suitably measured as utilities (as in a CUA) or bymeans of hard linial outomes (as in a CEA):E[∆e] = e1 − e0 (1.2)



2Introdution to Bayesian inferene
2.1 IntrodutionIn the ontext of statistial problems, the frequentist (or empirial) interpre-tation of probability has played a predominant role throughout the twentiethentury, espeially in the medial �eld. In this approah, probability is de�nedas the limiting frequeny of ourrene in an in�nitely repeated experiment.The underlying assumption is that of a ��xed� onept of probability, whihis unknown but an be theoretially dislosed by means of repeated trials,under the same experimental onditions. Moreover, probability is generallyregarded in lassial statistis as a physial property of the objet of theanalysis.However, although the frequentist approah still plays the role of the stan-dard in various applied areas, there are many other possible oneptualisa-tions of probability haraterising di�erent philosophies behind the problemof statistial inferene. Among these, an inreasingly popular is the Bayesian(sometimes referred to as subjetivist, in its ontemporary form), originatedby the posthumous work of Reverend Thomas Bayes (1763) and the inde-pendent ontributions by Pierre Simone Laplae (1774, 1812) � see Howie(2002), Senn (2003), Fienberg (2006) or Bertsh MGrayne (2011) for a his-torial aount of Bayesian statistis.The main feature of this approah is that probability is interpreted as asubjetive degree of belief in the ourrene of an event, representing theindividual level of unertainty in its atual realisation (fr. de Finetti, 1974,probably the most omprehensive aount of subjetive probability). One ofthe main impliations of subjetivism is that there is no requirement thatone should be able to speify, or even oneive of some relevant sequene ofrepetitions of the event in question, as happens in the frequentist framework,with the advantage that �one-o�� type of events an be assessed onsistently(Dawid, 2005).In the Bayesian philosophy, the probability assigned to any event dependson the individual whose unertainty is being expressed and on the state ofbakground information in light of whih this assessment is being made. Asany of these fators hanges, so too might the probability. Consequently, underthe subjetivist view, there is no assumption of a unique, orret (or �true�)29



30 Bayesian Methods in Health Eonomisvalue for the probability of any unertain event. Rather, eah individual isentitled to their own subjetive probability and aording to the evidenethat beomes sequentially available, they tend to update their belief.The development of Bayesian applied researh has been limited probablybeause of the ommon pereption among pratitioners that Bayesian meth-ods are �more omplex�. In fat, in our opinion the apparent higher degreeof omplexity is more than ompensated by at least the two following onse-quenes. First, Bayesian methods allow taking into aount, through a formaland onsistent model, all the available information, e.g. the results of previousstudies. Moreover, the inferential proess is straightforward, as it is possibleto make probabilisti statements diretly on the quantities of interest (i.e.some unobservable feature of the proess under study, typially � but notneessarily � represented by a set of parameters).In our opinion, Bayesian methods allow the pratitioner to make the mostof the evidene: in just the situation of �repeated trials�, after observing theoutomes (e.g. suesses and failures) of many past trials (and no other ol-lateral information), all subjetivists will be drawn to an assessment of theprobability of obtaining a suess on the next event that is extremely loseto the observed proportion of suesses so far. However, if past data are notsu�iently extensive, it may reasonably be argued that there should indeedbe sope for interpersonal disagreement as to the impliations of the evidene.Therefore the Bayesian approah provides a more general framework for theproblem of statistial inferene.Justi�ations for the use of Bayesian methods in health are evaluation havebeen detailed by Spiegelhalter et al. (2004), in terms of the formal quantita-tive inlusion of external evidene in all aspets of linial researh, inludingdesign, analysis, interpretation and poliy-making. In partiular, the Bayesianapproah is valuable beause: i) it proves more �exible and apable of adapt-ing to eah unique situation; ii) it represents a more e�ient inferential tool,making use of all available evidene and not restriting formal evaluationsto just the urrent data at hand; iii) it is partiularly e�etive in produingpreditions and inputs for deision-making.Jakman (2009) suggests that performing statistial analysis by means ofBayesian methods also produes advantages from a pragmati point of view:beause of the wide availability of fast and heap omputing power, simulation-based proedures have allowed researhers to exploit more and more omplexstatistial models, espeially under the Bayesian paradigm. Examples inludethe possibility of omputing interval estimations in a straightforward way,without the need to rely on asymptoti arguments. This in turns has thepotential of rendering �hard statistial problems easier�.The aount of Bayesian statistis that is presented in this hapter is farfrom exhaustive � more omprehensive referenes are O'Hagan (1994), Berry(1996), Bernardo and Smith (1999), Lindley (2000), Robert (2001), Lee (2004),Spiegelhalter et al. (2004), Gelman et al. (2004), Lindley (2006), Lanaster(2008), Carlin and Louis (2009), Jakman (2009) and Christensen et al. (2011).
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(d)FIGURE 2.10Gibbs sampling simulation for the semi-onjugated Normal model. The num-bers indiate the simulations sequene. Panels (a)-(d) show the situation after10, 30, 100 and 1000 iterations respetively. In this ase, already 100, or even30 simulations seem to over the relevant portion of the parametri spaegeneri omponent θk an be estimated as:V̂ar(θk | y) = S − 1

S
W (θk) +

1

S
B(θk),where W (θk) and B(θk) are the average within-hain variane and the
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FIGURE 2.11Graphial assessment of onvergene for a Markov hain; in this ase twohains are set up, starting from di�erent initial points. After the burn-in pe-riod, the two hains onverge to the stationary distributionbetween-hains variane, and S is the length of the MCMC sample. Con-vergene is then monitored by assessing the potential sale redution
R̂ =

√ V̂ar(θk | y)
W (θk)

, (2.19)whih represents the fator by whih the sale of the urrent estimated poste-rior distribution of θk an be further redued. If R̂ is large, then onsideringa longer MCMC run will potentially improve the inferene about the targetdistribution. As a rule of thumb, values of R̂ ≤ 1.1 are generally aepted asindiative of su�ient onvergene.2.4.7 MCMC autoorrelationThe seond ritial aspet of MCMC proedures is that the iterations pro-dued by a Markov hain are by de�nition orrelated, sine the urrent obser-vation depends on the previous one. Therefore, intuitively the atual numberof iterations stored to produe the inferene does not give in general the sameinformation provided by a sample of iid observations of the same size. In otherwords, the higher the autoorrelation, the lower the degree of equivalene be-tween the MCMC output and a proper iid sample of the same size.



3Statistial ost-e�etiveness analysis
3.1 IntrodutionIn the last ten years, health eonomi evaluations have built on more advanedstatistial deision-theoreti foundations, e�etively beoming a branh of ap-plied statistis (Briggs et al., 2006;Willan and Briggs, 2006), inreasingly oftenunder a Bayesian statistial approah (O'Hagan and Stevens, 2001; O'Haganet al., 2001; Parmigiani, 2002b; Spiegelhalter and Best, 2003; Spiegelhalteret al., 2004).As suggested by Spiegelhalter et al. (2004), this an be asribed to thefat that �the subjetive interpretation of probability is essential, sine theexpressions of unertainty required for a deision analysis an rarely be basedpurely on empirial data�.Even though the proess is, tehnially, a simple appliation of standarddeision-theoreti preepts (desribed for example in Lindley, 1985), healtheonomis is ompliated by issues related to other important fators that playa major role in real pratie medial deision making. Among these are thedi�ulty of applying standard ost-e�etiveness tehniques to the regulatoryproess (Baio and Russo, 2009), and the neessity of properly aounting forthe impat of unertainty in the inputs of deision proesses, an issue knownas sensitivity analysis (Parmigiani, 2002b; Saltelli et al., 2004). This latter inpartiular is fundamental and is a required basi omponent of any new drugapproval or reimbursement dossier in settings regulated by deision-makingbodies suh as NICE in the UK (Claxton et al., 2005).In this hapter we �rst brie�y review the main harateristis of deisiontheory. As in hapter 2 we proeed by introduing the more abstrat theory,in order to make the point that rational deision-making is e�eted by max-imising the expetation of a suitably de�ned utility funtion. This is used toquantify the value assoiated with the unertain onsequenes of a possibleintervention.Next we link the general methodology to the spei� problem faed in healtheonomi evaluation. This requires the spei�ation of the problem in termsof a omposite response, aounting for both ost and bene�ts. We presenta relatively simple running example and, as in hapter 2, we swith betweenthe development of the theory and its appliation throughout. 75



76 Bayesian Methods in Health EonomisWe then onentrate on the development of sensitivity analysis tehniques,whih as suggested earlier play a fundamental role in health eonomi evalua-tions. Finally, we present some more advaned issues assoiated with the mainassumptions on whih ost-e�etiveness or ost-utility analyses are based: inpartiular, we onsider the problems of risk-aversion and the impat of marketonstraints (e.g. in the ase of regulatory proesses).
3.2 Deision theory and expeted utility3.2.1 The problemHealth eonomi evaluations are a typial problem of deision-making underunertainty. The main objetive is to evaluate omparatively the unknownonsequenes of a given health intervention against at least another. A suitableapproah to deal with this kind of problems is based on expeted utility theory,whih we brie�y review in this setion. More substantial referenes are Savage(1954), Rai�a (1968), Lindley (1985), Berger (1985), Smith (1988), Bernardoand Smith (1999), Parmigiani (2002b), Jordaan (2005) and Smith (2011).Formally, a deision problem is haraterised by some fundamental ele-ments: �rst, we onsider the possible deisions (interventions, ations, treat-ments) t ∈ T , representing the alternatives available to the deision-maker.The seletion of eah possible intervention has some onsequenes (outomes)
o ∈ O, de�ned in general as funtions of suitable random quantities ω ∈ Ω.Every onsequene an be expressed as o = (ω, t), i.e. as the result of hoosingintervention t and the fat that a series of random quantities ω will obtain inthe future. The set of onsequenes an be then represented as O = Ω× T .In addition to these fundamental quantities, the deision-maker needs tode�ne a sheme of preferenes among the many deisions and onsequenes;this relationship of preferene is generially indiated by the symbol `�'. Thenotation t1 � t2 indiates that the random onsequenes of ation t1 are notpreferred to those of ation t2. If t1 � t2 and simultaneously t2 � t1, the twoations are indi�erent: t1 ∼ t2.The Bayesian deision proess is based on a set of presriptive axioms. Theseare the riteria that should hold in order to make rational deisions. The �rstset of axioms is related to the oherene of the deision making and involves:� omparability of the onsequenes. This assumes that the deision-makeris apable of produing some form of ranking of the possible outomes, sothat there exist at least one pair of onsequenes o1 and o2 for whih theformer is preferred to the latter;� transitivity of the preferenes. This axiom implies that if the deision-maker has a preferene for ation t2 over ation t1 and for ation t3 over
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nint is the number of interventions being ompared∗ (hapter 4 disusses howto run a Bayesian model, store and post-proess its results using R).In this ase, nint = 2 sine we are omparing two interventions and weuse nsim = 500 simulations. The relevant health eonomi quantities an beprodued by running the funtion bcea, by means of the following ommands(fr. �4.7 for a more detailed desription).

treats <- c("Old Chemotherapy","New Chemotherapy")

m <- bcea(e=e,c=c,ref=2,interventions=treats,Kmax=50000)The �rst ommand de�nes a vetor of labels to be assoiated with eahintervention. Then we reate an objet m whih ontains the results of theost-e�etiveness analysis performed by bcea.This funtion takes several inputs: the most important ones are the twomatries e and c. Then we need to speify the referene intervention: in thisase we set the option ref=2 whih tells R that the seond olumn of e and
c ontains the values simulated for the intervention being ompared to thestandard treatment. If the option ref is left unspei�ed, R assumes that the�rst intervention is to be used as the intervention under analysis.Next we speify that the interventions have labels de�ned in the vetor
treats; if the option interventions was left unspei�ed, R would onstrutlabels in the form �Intervention 1�, . . ., �Intervention T� (with T = nint).The last option is related to the willingness-to-pay parameter and spei�esthe maximum value to be used for the analysis. In this ase, we set the option
Kmax=50000, whih instruts R to selet a grid of values between 0 and 50 000.The grid is built by onsidering a point every Kmax/500 in that interval. Ifnothing is spei�ed for Kmax, the funtion bcea automatially onsiders a valueof 50 000.All the results derived upon varying k in the grid are stored in the objet mand the vetor of values for k is saved in the element† m$k, whih in this aseontains the 501 values (0, 500, 1000, . . . , 50 000).Using the output produed by bcea and saved in m, we an simplyobtain a graph of the ost-e�etiveness plane by entering the ommand
ceplane.plot(m,comparison=1,wtp=25000). The input of this funtion is theobjet m and there are two possible options: the �rst one spei�es whih om-parison should be plotted. In this ase, there are only two interventions andtherefore there an only be one omparison. In general, there are nint − 1

∗Notie that, while spei�ally designed for a Bayesian analysis, BCEA an also be run in afrequentist setting, provided that the two matries with simulations from the distributionsof e and c are available. In a non-Bayesian setting, these might be obtained, for example, byusing re-sampling algorithms suh as the bootstrap (although, of ourse, in that instanethey would not represent the posterior distributions).
†In R, the elements ontained in an objet an be aessed using the notation object$element.Thus, typing m$k prints the entire grid of values seleted for the willingness-to-pay de�nedin the objet m.



Statistial ost-e�etiveness analysis 87possible omparisons. The seond option spei�es the value of the willingness-to-pay to use as referene. In this ase, we have hosen the default value of
k = 25 000, whih is usually reommended by NICE as the referene ost-per-QALY.
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FIGURE 3.1Cost-e�etiveness plane for the hemotherapy example. The dots representthe simulations from the posterior distribution of (∆e,∆c), while the shadedpart of the graph shows the �sustainability area�, i.e. the portion of the planein whih the points are below the willingness-to-pay threshold, whih is set to
25 000 in this aseThe result is depited in Figure 3.1, in whih the dots are the simulationsfrom the posterior distribution of (∆e,∆c). The graph also shows the lineobtained in orrespondene of the set value of k. The shaded area below theline represent the portion of the plane where the simulated values are belowthat threshold and therefore it an be onsidered as a �sustainability area�.The red dot represents the ICER (fr. �1.7). As in this ase it lies in thesustainability area, we an onlude that, at the willingness-to-pay thresholdseleted, the new drug is a ost-e�etive alternative with respet to the statusquo. With respet to Figure 1.6, the urrent analysis also presents a quanti�-ation of the unertainty underlying the point estimation represented by theICER, beause it is based on the entire distribution of (∆e,∆c), rather thanjust on its expetations.A more omprehensive analysis is provided by Figure 3.2, whih is produed



4Bayesian analysis in pratie
4.1 IntrodutionAs disussed in hapter 2, if it is possible to sample from the full onditionaldistributions, Gibbs sampling algorithms an be programmed in a relativelyeasy way. However, in most pratial situations, the required onditional dis-tributions are not analytially tratable and therefore it is neessary to ap-proximate them (e.g. by means of algorithms suh as Metropolis-Hastings orslie sampling) before Gibbs sampling an be performed.The most popular software that allows the semi-automatisation of MCMCproedures is BUGS, and partiularly its MS Windows inarnations WinBUGS(Spiegelhalter et al., 2002) and OpenBUGS (Lunn et al., 2009), whose widespreaduse has arguably ontributed to the establishment of applied Bayesian statis-tis in the last twenty years.The aronym BUGS stands for Bayesian analysis Using Gibbs Sampling andthe program essentially onsists of two main parts. The �rst is a parser, whihinspets the set of delarations provided by the user to de�ne the statistialmodel (in terms of data and parameter distributions and, possibly, other de-terministi relationships among the variables in the problem). In partiular,the parser odi�es the statistial model in terms of the orresponding DAG,trying to make use of the onditional independene relationships implied bythe model assumed by the user. These generally simplify the omputationssine the full onditional distribution for any (set of) node(s) only involvesa loal omputation on the graph. Thus, only a small portion of the wholemodel needs to be onsidered at any given time (Lunn et al., 2009).The seond part is an expert system that is used to dedue the form of thefull onditional distributions generated by the problem. When possible, BUGStries to exploit onjugay to speed up the proess; when this is not feasible,suitable omplementary sampling algorithms are applied together with theGibbs sampling to obtain the required MCMC estimation.While both BUGS and WinBUGS an run as stand-alone software, in reentyears several programs have been written to interfae them with standardstatistial software suh as R, Matlab, Stata or SAS, whih makes the proessof data analysis easier (we disuss this aspet later).Despite their wide suess, WinBUGS or BUGS are not the only possible al-115



Bayesian analysis in pratie 137baby, knowing that the mother has gone into labour at exatly that estimatedgestational age), or a hypothetial value (e.g. if the dotor wants to plandi�erent are strategies for a mother who has not gone into labour yet).We an then run the model using the following ode.
X.star <- 28

dataJags2 <- list("N","y","X","k","X.star")

filein <- "modelNormal2.txt"

params2 <- c("alpha","beta","sigma","y.star")

inits <- function(){

list(alpha=rnorm(1),beta=rnorm(1),

lsigma=rnorm(1),y.star=runif(1,0,6000))

}

m2 <- jags(dataJags2, inits, params2, model.file=filein,

n.chains=2,n.iter=50000,n.burnin=4500,n.thin=91,DIC=TRUE)

print(m2,digits=3,intervals=c(0.025, 0.975))After we have set the value for the new estimated gestational age X.star, werede�ne the data list to inlude this node as well. Then we rede�ne the nameof the model �le to point JAGS towards the new spei�ation and the objetontaining the parameters to be monitored so that the preditive distributionof y.star is inluded.The next modi�ation to the previous R ode is in the inits funtion,where we set an initial value also for the node y.star. Tehnially, this is notstritly neessary; in fat, JAGS/BUGS will estimate the preditive distributione�etively using a simple MC approah (suh as the one disussed in �2.4.3)using for eah iteration the urrent value of the relevant parameters and thusthere is no issue of onvergene. However, it is generally a good idea to providereasonable starting values for any non-observed random quantity and in thisase we do so by providing a value from a Uniform distribution in the interval
[0; 6000].Finally, we run the jags funtion for 50000 iterations using the �rst 9500for the burn-in and thinning of 81. This implies that the simulations saved toprodue the posterior inferene are 1000. The results are saved in the objet
m2 whih is then printed to give the following output.

Inference for Bugs model at "modelNormal2.txt", fit using jags,

2 chains, each with 50000 iterations (first 9500 discarded),

n.thin = 81, n.sims = 1000 iterations saved

mu.vect sd.vect 2.5% 97.5% Rhat n.eff

alpha -2343.609 169.118 -2667.398 -2023.663 1.000 1000
beta 143.319 4.333 135.147 151.706 1.000 1000

sigma 455.764 9.928 436.599 476.001 1.002 1000

y.star 1677.155 460.291 743.366 2565.684 1.000 1000

deviance 16815.939 8.107 16802.916 16833.459 1.000 1000

For each parameter, n.eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor



5Health eonomi evaluation in pratie
5.1 IntrodutionIn this �nal hapter we present some examples of health eonomi evaluation.In partiular we fous on three �typial� ases; the �rst onerns the analysisof individual level data, spei�ally from a RCT, in whih a sample of individ-uals is observed in terms of the relevant measures of ost and linial outome.The seond example fousses on the proess of evidene synthesis, a situationpartiularly relevant when individual data are not available. In these situa-tions, the relevant random quantities an be estimated by the ombination ofthe available evidene, e.g. oming from published studies, or expert opinions.Within the Bayesian framework, this is very muh linked to the developmentof hierarhial models, whih we brie�y review before presenting the example.Finally, we onsider the analysis of Markov models, an inreasingly populartool in health eonomi evaluation, whih allow the simulation of a follow upanalysis on a �virtual� ohort of patients.While the problems highlighted in eah of the following setions an beonsidered as typial of the situations onsidered in applied health eonomis,they are far from representing an exhaustive set: in real appliations, thereare ountless subtleties and nuisanes that need to be addressed spei�ally.In partiular in the Bayesian approah, this require a areful spei�ation ofthe model to be used, mainly in terms of the prior distributions, but also interms of the possible orrelation levels among the observed and unobservedrandom variables.Nevertheless, we takle some of the most relevant issues arising from theanalysis of health eonomi data, trying to point out possible solutions andreferenes where more detailed modelling strategies are presented. All theexamples are worked out starting from the desription of the problem, thespei�ation of the Bayesian model and then the ode used to run the MCMCanalysis and the post-proessing neessary to derive the relevant health eo-nomi quantities used to produe the deision-making proess.

153
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# the "healthy" adults population (t=0)

for(h in 1:H) {

x[h] ~ dbin(beta[h], m[h])

logit(beta[h]) <- gamma[h]

gamma[h] ~ dnorm(mu.gamma,tau.gamma)

}

# Evidence synthesis for effectiveness of NIs (t=1 vs t=0)

for (s in 1:S) {

r0[s] ~ dbin(pi0[s],n0[s])

r1[s] ~ dbin(pi1[s],n1[s])

logit(pi0[s]) <- alpha[s]

logit(pi1[s]) <- alpha[s]+delta[s]
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delta[s] ~ dnorm(mu.delta,tau.delta)

alpha[s] ~ dnorm(0,0.00001)

}

# Prior distributions

mu.delta ~ dnorm(0,0.00001)

mu.gamma ~ dnorm(0,0.00001)

sigma.delta ~ dunif(0,10)

tau.delta <- pow(sigma.delta,-2)

sigma.gamma ~ dunif(0,10)

tau.gamma <- pow(sigma.gamma,-2)

# Costs of influenza

c.inf ~ dnorm(mu.inf,tau.inf)

# Length of time to recovery when infected by influenza

l ~ dlnorm(mu.l,tau.l)

# Odds Ratio of influenza under treatment with NIs

rho <- exp(mu.delta)

# Estimated probability of influenza in "healthy adults" for t=0

p0 <- exp(mu.gamma)/(1+exp(mu.gamma))

# Estimated probability of influenza in "healthy adults" for t=1

p1 <- (rho*p0/(1-p0))/(1+rho*p0/(1-p0))

}The data pre-proessing required in R involves the de�nition of the variablesontaining the observed data. We do this with the following ode.
# Evidence synthesis on incidence of influenza

# in healthy adults (under t=0)

x <- m <- numeric()

x <- c(0,6,5,6,25,18,14,3,27)

m <- c(23,241,159,137,519,298,137,24,132)

H <- length(x)

# Evidence synthesis on effectiveness of NIs vs placebo

r0 <- r1 <- n0 <- n1 <- numeric()

r0 <- c(34,40,9,19,6,34)

r1 <- c(11,7,3,3,3,4)

n0 <- c(554,423,144,268,251,462)

n1 <- c(553,414,144,268,252,493)

S <- length(r0)

# Data on costs

unit.cost.drug <- 2.4 # unit (daily) cost of NI

length.treat <- 6*7 # 6 weeks course of treatment
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