Chapman & Hall/CRC Biostatistics Series

Bayesian Methods
in Health Economics

Gianluca Baio

CRC Press
Taylor & Francis Group

Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

A CHAPMAN & HALL BOOK



1

Introduction to health economic evaluation

This chapter is written by Rachael M. Hunter (Department of Primary Care and
Population Health, UCL) and Gianluca Baio

1.1 Introduction

In recent years health economics has become an increasingly important disci-
pline in medical research, especially with the transition from the paradigm of
evidence based medicine to that of translational research (Berwick, 2005; Lean
et al., 2008), which aims at making basic research applicable in the context
of real practice, and under budget constraints, in order to enhance patients’
access to optimal health care.

Since the 1970s, health care services have undergone dramatic changes:
increasing demand for health care has generated an increase in the number
of available interventions, which have sometimes been applied regardless on
considerations about the actual quality and the costs associated.

Consequently, decision-makers responsible for the provision of health care
are increasingly facing critical appraisal processes of the modality in which
they manage the available resources and they need to adjust the management
and the evaluation of the processes used, with respect to some measures of
clinical benefit. The main reasons for the necessity of containing cost associ-
ated with health care are essentially the following:

e The progressive increase of the proportion of the “older” (above 65 years)
population;

e the increase of life expectancy and of the incidence of chronic and degen-
erative pathologies;

e the refinement of diagnostic techniques;

e the availability of innovative health technologies and therapeutic tools
associated with better clinical outcomes but also with higher costs.

In this perspective, the systematic analysis of organised data provides a
fundamental contribution to the identification of economically appropriate
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strategies. This in turns has helped the integration between several clinical
and quantitative (e.g. statistics and economics) disciplines, so much that it
can be reasonably argued that health economics is in fact a combination of
medical research, epidemiology, statistics and economics. Figure 1.1 shows this
concept graphically and highlights the fact that health economics encompasses
more than the mere cost evaluations.
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treat a patient with
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e Budgeting
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inference and financial analysis
FIGURE 1.1

Health economic evaluation as the integration of different disciplines. Cost
analysis only represents one side of the story

In this chapter we present some concepts that are relevant to the definition
and description of health economic evaluations. In particular we discuss the
characteristics of the two dimensions along which economic evaluations are
conducted: costs and clinical benefits. The latter can be defined in several
different ways, each of which gives rise to a specific method of analysis. We
present the main ones in §1.6. Finally, we give a first introduction to the
problem of comparative evaluation of two or more health interventions, which
will be discussed in more technical detail in chapters 3 and 5.

1.2 Health economic evaluation

Health economics can be formally described as the application of economic
theory to health (defined as “a state of complete physical, mental, and social
well-being and not merely the absence of disease or infirmity”; WHO, 2012)
and health care, i.e. the diagnosis, treatment and prevention of disease and
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TABLE 1.4

An example of calculation of QALYs from utility scores. In the two treatment
groups (t = 0,1), the measurements consist of the utility score us; and the
costs ¢, for j =0,...,4 occasions

Baseline 6 12 18 24 Total
months months months months

Treatment group (t =1)

Utility score  0.656 0.744 0.85 0.744 0.744
QALYs 0.350 0.399 0.399 0.372 1.519
Costs £2300 £300 £300 £300  £3200

Control group (t =0)
Utility score 0.656 0.656 0.656 0.656 0.744

QALYs 0.328 0.328 0.328 0.350 1.334
Costs £300 £300 £300 £300  £1200
Difference
in QALYs (E[A.])® 0.185
in costs (E[A.])® £2000
Cost per QALY" £10811

@ These quantities are defined in §1.7

where

time between measurements j and (j — 1), in years
=

1 year

For example, the QALYs at 6 months (i.e. at time j = 1) for treatment
t = 0 are computed as

0.656 + 0.656 0.5
qo1 = <7—; ) (T) = 0.164,

since the time between the two measurements, 6 months, is only half a year.
Similarly, for ¢ = 1 the computation gives

. 744 .
= (LLOT) (05)

Overall, for each treatment the QALYs can be computed by summing the ¢;;
terms across all the time periods. In the present example, the measurements
are repeated at every 6 month intervals and thus all values are added up
over the 2 years. We define the QALYs using the notation e; (to indicate the
“effectiveness” of the treatment) as

J
€ = E qtj-
Jj=1
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This produces a result of 1.519 extra QALYs for the patient under ¢ = 1 and
only 1.334 extra QALYs for the single patient under t = 0.

Notice that, in more realistic cases, instead of a single patient per group, we
would have access to a sample of patients and therefore the relevant measures
would be the population average computed across all relevant individuals. [J

Each of the three main types of economic evaluation described above has
strengths and weaknesses, and although each has their own specific charac-
teristics most economic evaluations generally combine aspects of each. More
in depth information can be found in Drummond et al. (2005). NICE’s De-
cision Support Unit also has extensive guidance to support technical ap-
praisals http://www.nicedsu.org.uk/. Table 1.5 summarises the main dif-
ferences among them.

TABLE 1.5
A comparison of the characteristics of the main types of economic
evaluation. Adapted from Meltzer and Teutsch (1998)

Type Costs included® Outcomes
Direct Indirect

Cost-benefit v v Monetary unit

Cost-effectiveness v often Health outcome®

Cost-utility v rarely Utility measure®

@ All future costs and benefits should be discounted to the reference year (cfr. §1.5)
b For example: number of deaths averted
¢ For example: QALYs (cfr. §1.6.4)

1.7 Comparing health interventions

As discussed earlier, the purpose of economic evaluations is to provide infor-
mation to decision-makers about the costs and outcomes of health care options
to help with resource allocation decisions. Generally, economic summaries are
computed in the form of “cost-per-outcome” ratios.

Moreover, in order to compare the two interventions (¢t = 0, 1), we can define
suitable incremental population summaries, such as the population average
increment in benefits, suitably measured as utilities (as in a CUA) or by
means of hard clinical outcomes (as in a CEA):

E[A.] =7 — % (1.2)
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Introduction to Bayesian inference

2.1 Introduction

In the context of statistical problems, the frequentist (or empirical) interpre-
tation of probability has played a predominant role throughout the twentieth
century, especially in the medical field. In this approach, probability is defined
as the limiting frequency of occurrence in an infinitely repeated experiment.

The underlying assumption is that of a “fixed” concept of probability, which
is unknown but can be theoretically disclosed by means of repeated trials,
under the same experimental conditions. Moreover, probability is generally
regarded in classical statistics as a physical property of the object of the
analysis.

However, although the frequentist approach still plays the role of the stan-
dard in various applied areas, there are many other possible conceptualisa-
tions of probability characterising different philosophies behind the problem
of statistical inference. Among these, an increasingly popular is the Bayesian
(sometimes referred to as subjectivist, in its contemporary form), originated
by the posthumous work of Reverend Thomas Bayes (1763) and the inde-
pendent contributions by Pierre Simone Laplace (1774, 1812) — see Howie
(2002), Senn (2003), Fienberg (2006) or Bertsch McGrayne (2011) for a his-
torical account of Bayesian statistics.

The main feature of this approach is that probability is interpreted as a
subjective degree of belief in the occurrence of an event, representing the
individual level of uncertainty in its actual realisation (cfr. de Finetti, 1974,
probably the most comprehensive account of subjective probability). One of
the main implications of subjectivism is that there is no requirement that
one should be able to specify, or even conceive of some relevant sequence of
repetitions of the event in question, as happens in the frequentist framework,
with the advantage that “one-off” type of events can be assessed consistently
(Dawid, 2005).

In the Bayesian philosophy, the probability assigned to any event depends
on the individual whose uncertainty is being expressed and on the state of
background information in light of which this assessment is being made. As
any of these factors changes, so too might the probability. Consequently, under
the subjectivist view, there is no assumption of a unique, correct (or “true”)
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value for the probability of any uncertain event. Rather, each individual is
entitled to their own subjective probability and according to the evidence
that becomes sequentially available, they tend to update their belief.

The development of Bayesian applied research has been limited probably
because of the common perception among practitioners that Bayesian meth-
ods are “more complex”. In fact, in our opinion the apparent higher degree
of complexity is more than compensated by at least the two following conse-
quences. First, Bayesian methods allow taking into account, through a formal
and consistent model, all the available information, e.g. the results of previous
studies. Moreover, the inferential process is straightforward, as it is possible
to make probabilistic statements directly on the quantities of interest (i.e.
some unobservable feature of the process under study, typically — but not
necessarily — represented by a set of parameters).

In our opinion, Bayesian methods allow the practitioner to make the most
of the evidence: in just the situation of “repeated trials”, after observing the
outcomes (e.g. successes and failures) of many past trials (and no other col-
lateral information), all subjectivists will be drawn to an assessment of the
probability of obtaining a success on the next event that is extremely close
to the observed proportion of successes so far. However, if past data are not
sufficiently extensive, it may reasonably be argued that there should indeed
be scope for interpersonal disagreement as to the implications of the evidence.
Therefore the Bayesian approach provides a more general framework for the
problem of statistical inference.

Justifications for the use of Bayesian methods in health care evaluation have
been detailed by Spiegelhalter et al. (2004), in terms of the formal quantita-
tive inclusion of external evidence in all aspects of clinical research, including
design, analysis, interpretation and policy-making. In particular, the Bayesian
approach is valuable because: i) it proves more flexible and capable of adapt-
ing to each unique situation; i) it represents a more efficient inferential tool,
making use of all available evidence and not restricting formal evaluations
to just the current data at hand; iii) it is particularly effective in producing
predictions and inputs for decision-making.

Jackman (2009) suggests that performing statistical analysis by means of
Bayesian methods also produces advantages from a pragmatic point of view:
because of the wide availability of fast and cheap computing power, simulation-
based procedures have allowed researchers to exploit more and more complex
statistical models, especially under the Bayesian paradigm. Examples include
the possibility of computing interval estimations in a straightforward way,
without the need to rely on asymptotic arguments. This in turns has the
potential of rendering “hard statistical problems easier”.

The account of Bayesian statistics that is presented in this chapter is far
from exhaustive — more comprehensive references are O’Hagan (1994), Berry
(1996), Bernardo and Smith (1999), Lindley (2000), Robert (2001), Lee (2004),
Spiegelhalter et al. (2004), Gelman et al. (2004), Lindley (2006), Lancaster
(2008), Carlin and Louis (2009), Jackman (2009) and Christensen et al. (2011).
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FIGURE 2.10

Gibbs sampling simulation for the semi-conjugated Normal model. The num-
bers indicate the simulations sequence. Panels (a)-(d) show the situation after
10, 30, 100 and 1000 iterations respectively. In this case, already 100, or even
30 simulations seem to cover the relevant portion of the parametric space

generic component 0y can be estimated as:

— S—-1 1
Var(0y | y) = TW(ak) + §B(9k),

where W(0) and B(0)) are the average within-chain variance and the
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Graphical assessment of convergence for a Markov chain; in this case two
chains are set up, starting from different initial points. After the burn-in pe-
riod, the two chains converge to the stationary distribution

between-chains variance, and S is the length of the MCMC sample. Con-
vergence is then monitored by assessing the potential scale reduction

Var(6y | y)

R= , 2.19

W(0k) (2.19)
which represents the factor by which the scale of the current estimated poste-
rior distribution of 8y can be further reduced. If R is large, then considering
a longer MCMC run will potentially improve the inference about the target
distribution. As a rule of thumb, values of R < 1.1 are generally accepted as

indicative of sufficient convergence.

2.4.7 MCMC autocorrelation

The second critical aspect of MCMC procedures is that the iterations pro-
duced by a Markov chain are by definition correlated, since the current obser-
vation depends on the previous one. Therefore, intuitively the actual number
of iterations stored to produce the inference does not give in general the same
information provided by a sample of iid observations of the same size. In other
words, the higher the autocorrelation, the lower the degree of equivalence be-
tween the MCMC output and a proper iid sample of the same size.
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Statistical cost-effectiveness analysis

3.1 Introduction

In the last ten years, health economic evaluations have built on more advanced
statistical decision-theoretic foundations, effectively becoming a branch of ap-
plied statistics (Briggs et al., 2006; Willan and Briggs, 2006), increasingly often
under a Bayesian statistical approach (O’Hagan and Stevens, 2001; O’Hagan
et al., 2001; Parmigiani, 2002b; Spiegelhalter and Best, 2003; Spiegelhalter
et al., 2004).

As suggested by Spiegelhalter et al. (2004), this can be ascribed to the
fact that “the subjective interpretation of probability is essential, since the
expressions of uncertainty required for a decision analysis can rarely be based
purely on empirical data”.

Even though the process is, technically, a simple application of standard
decision-theoretic precepts (described for example in Lindley, 1985), health
economics is complicated by issues related to other important factors that play
a major role in real practice medical decision making. Among these are the
difficulty of applying standard cost-effectiveness techniques to the regulatory
process (Baio and Russo, 2009), and the necessity of properly accounting for
the impact of uncertainty in the inputs of decision processes, an issue known
as sensitivity analysis (Parmigiani, 2002b; Saltelli et al., 2004). This latter in
particular is fundamental and is a required basic component of any new drug
approval or reimbursement dossier in settings regulated by decision-making
bodies such as NICE in the UK (Claxton et al., 2005).

In this chapter we first briefly review the main characteristics of decision
theory. As in chapter 2 we proceed by introducing the more abstract theory,
in order to make the point that rational decision-making is effected by max-
imising the expectation of a suitably defined utility function. This is used to
quantify the value associated with the uncertain consequences of a possible
intervention.

Next we link the general methodology to the specific problem faced in health
economic evaluation. This requires the specification of the problem in terms
of a composite response, accounting for both cost and benefits. We present
a relatively simple running example and, as in chapter 2, we switch between
the development of the theory and its application throughout.
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We then concentrate on the development of sensitivity analysis techniques,
which as suggested earlier play a fundamental role in health economic evalua-
tions. Finally, we present some more advanced issues associated with the main
assumptions on which cost-effectiveness or cost-utility analyses are based: in
particular, we consider the problems of risk-aversion and the impact of market
constraints (e.g. in the case of regulatory processes).

3.2 Decision theory and expected utility
3.2.1 The problem

Health economic evaluations are a typical problem of decision-making under
uncertainty. The main objective is to evaluate comparatively the unknown
consequences of a given health intervention against at least another. A suitable
approach to deal with this kind of problems is based on expected utility theory,
which we briefly review in this section. More substantial references are Savage
(1954), Raiffa (1968), Lindley (1985), Berger (1985), Smith (1988), Bernardo
and Smith (1999), Parmigiani (2002b), Jordaan (2005) and Smith (2011).

Formally, a decision problem is characterised by some fundamental ele-
ments: first, we consider the possible decisions (interventions, actions, treat-
ments) ¢t € T, representing the alternatives available to the decision-maker.
The selection of each possible intervention has some consequences (outcomes)
0 € O, defined in general as functions of suitable random quantities w € .
Every consequence can be expressed as o = (w, t), i.e. as the result of choosing
intervention ¢ and the fact that a series of random quantities w will obtain in
the future. The set of consequences can be then represented as O = Q x T.

In addition to these fundamental quantities, the decision-maker needs to
define a scheme of preferences among the many decisions and consequences;
this relationship of preference is generically indicated by the symbol ‘<’. The
notation ¢; < to indicates that the random consequences of action ¢ are not
preferred to those of action ¢5. If ¢ < ¢2 and simultaneously ¢ < ¢1, the two
actions are indifferent: ¢t1 ~ 5.

The Bayesian decision process is based on a set of prescriptive azioms. These
are the criteria that should hold in order to make rational decisions. The first
set of axioms is related to the coherence of the decision making and involves:

e comparability of the consequences. This assumes that the decision-maker
is capable of producing some form of ranking of the possible outcomes, so
that there exist at least one pair of consequences o1 and oy for which the
former is preferred to the latter;

e transitivity of the preferences. This axiom implies that if the decision-
maker has a preference for action ¢o over action t; and for action t3 over
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Nint 1S the number of interventions being compared* (chapter 4 discusses how
to run a Bayesian model, store and post-process its results using R).

In this case, nj,y = 2 since we are comparing two interventions and we
use Ngim = 500 simulations. The relevant health economic quantities can be
produced by running the function bcea, by means of the following commands
(cfr. §4.7 for a more detailed description).

treats <- c(”"0ld Chemotherapy”,"New Chemotherapy")
m <- bcea(e=e,c=c,ref=2,interventions=treats,Kmax=50000)

The first command defines a vector of labels to be associated with each
intervention. Then we create an object m which contains the results of the
cost-effectiveness analysis performed by bcea.

This function takes several inputs: the most important ones are the two
matrices e and c. Then we need to specify the reference intervention: in this
case we set the option ref=2 which tells R that the second column of e and
¢ contains the values simulated for the intervention being compared to the
standard treatment. If the option ref is left unspecified, R assumes that the
first intervention is to be used as the intervention under analysis.

Next we specify that the interventions have labels defined in the vector
treats; if the option interventions was left unspecified, R would construct
labels in the form “Intervention 17, ..., “Intervention T” (with T = njput).

The last option is related to the willingness-to-pay parameter and specifies
the maximum value to be used for the analysis. In this case, we set the option
Kmax=50000, which instructs R to select a grid of values between 0 and 50 000.
The grid is built by considering a point every Kmax/500 in that interval. If
nothing is specified for Kmax, the function bcea automatically considers a value
of 50 000.

All the results derived upon varying k in the grid are stored in the object m
and the vector of values for k is saved in the element! m$k, which in this case
contains the 501 values (0,500, 1000, ..., 50 000).

Using the output produced by bcea and saved in m, we can simply
obtain a graph of the cost-effectiveness plane by entering the command
ceplane.plot(m,comparison=1,wtp=25000). The input of this function is the
object m and there are two possible options: the first one specifies which com-
parison should be plotted. In this case, there are only two interventions and
therefore there can only be one comparison. In general, there are nj, — 1

*Notice that, while specifically designed for a Bayesian analysis, BCEA can also be run in a
frequentist setting, provided that the two matrices with simulations from the distributions
of e and c are available. In a non-Bayesian setting, these might be obtained, for example, by
using re-sampling algorithms such as the bootstrap (although, of course, in that instance
they would not represent the posterior distributions).

TIn R, the elements contained in an object can be accessed using the notation object$element.
Thus, typing m$k prints the entire grid of values selected for the willingness-to-pay defined
in the object m.
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possible comparisons. The second option specifies the value of the willingness-
to-pay to use as reference. In this case, we have chosen the default value of
k = 25000, which is usually recommended by NICE as the reference cost-per-
QALY.

Cost effectiveness plane
New Chemotherapy vs Old Chemotherapy

* ICER=6698.11

1000000
1

500000
Il

Cost differential

-500000
|

k =25000
T T T T T T T
-100 -50 0 50 100 150 200

Effectiveness differential

FIGURE 3.1

Cost-effectiveness plane for the chemotherapy example. The dots represent
the simulations from the posterior distribution of (A, A.), while the shaded
part of the graph shows the “sustainability area”; i.e. the portion of the plane
in which the points are below the willingness-to-pay threshold, which is set to
25000 in this case

The result is depicted in Figure 3.1, in which the dots are the simulations
from the posterior distribution of (A, A.). The graph also shows the line
obtained in correspondence of the set value of k. The shaded area below the
line represent the portion of the plane where the simulated values are below
that threshold and therefore it can be considered as a “sustainability area”.

The red dot represents the ICER (cfr. §1.7). As in this case it lies in the
sustainability area, we can conclude that, at the willingness-to-pay threshold
selected, the new drug is a cost-effective alternative with respect to the status
quo. With respect to Figure 1.6, the current analysis also presents a quantifi-
cation of the uncertainty underlying the point estimation represented by the
ICER, because it is based on the entire distribution of (A., A.), rather than
just on its expectations.

A more comprehensive analysis is provided by Figure 3.2, which is produced



4

Bayesian analysis in practice

4.1 Introduction

As discussed in chapter 2, if it is possible to sample from the full conditional
distributions, Gibbs sampling algorithms can be programmed in a relatively
easy way. However, in most practical situations, the required conditional dis-
tributions are not analytically tractable and therefore it is necessary to ap-
proximate them (e.g. by means of algorithms such as Metropolis-Hastings or
slice sampling) before Gibbs sampling can be performed.

The most popular software that allows the semi-automatisation of MCMC
procedures is BUGS, and particularly its MS Windows incarnations WinBUGS
(Spiegelhalter et al., 2002) and OpenBUGS (Lunn et al., 2009), whose widespread
use has arguably contributed to the establishment of applied Bayesian statis-
tics in the last twenty years.

The acronym BUGS stands for Bayesian analysis Using Gibbs Sampling and
the program essentially consists of two main parts. The first is a parser, which
inspects the set of declarations provided by the user to define the statistical
model (in terms of data and parameter distributions and, possibly, other de-
terministic relationships among the variables in the problem). In particular,
the parser codifies the statistical model in terms of the corresponding DAG,
trying to make use of the conditional independence relationships implied by
the model assumed by the user. These generally simplify the computations
since the full conditional distribution for any (set of) node(s) only involves
a local computation on the graph. Thus, only a small portion of the whole
model needs to be considered at any given time (Lunn et al., 2009).

The second part is an expert system that is used to deduce the form of the
full conditional distributions generated by the problem. When possible, BUGS
tries to exploit conjugacy to speed up the process; when this is not feasible,
suitable complementary sampling algorithms are applied together with the
Gibbs sampling to obtain the required MCMC estimation.

While both BUGS and WinBUGS can run as stand-alone software, in recent
years several programs have been written to interface them with standard
statistical software such as R, Matlab, Stata or SAS, which makes the process
of data analysis easier (we discuss this aspect later).

Despite their wide success, WinBUGS or BUGS are not the only possible al-
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baby, knowing that the mother has gone into labour at exactly that estimated
gestational age), or a hypothetical value (e.g. if the doctor wants to plan
different care strategies for a mother who has not gone into labour yet).

We can then run the model using the following code.

X.star <- 28

dataJags2 <- list("N","y", "X","k","X.star")

filein <- "modelNormal2.txt”

params2 <- c("alpha”,"beta","sigma","y.star")

inits <- function(){
list(alpha=rnorm(1),beta=rnorm(1),

lsigma=rnorm(1),y.star=runif(1,0,6000))

3

m2 <- jags(dataJags2, inits, params2, model.file=filein,
n.chains=2,n.iter=50000,n.burnin=4500,n.thin=91,DIC=TRUE)

print(m2,digits=3,intervals=c(0.025, 0.975))

After we have set the value for the new estimated gestational age X. star, we
redefine the data list to include this node as well. Then we redefine the name
of the model file to point JAGS towards the new specification and the object
containing the parameters to be monitored so that the predictive distribution
of y.star is included.

The next modification to the previous R code is in the inits function,
where we set an initial value also for the node y.star. Technically, this is not
strictly necessary; in fact, JAGS/BUGS will estimate the predictive distribution
effectively using a simple MC approach (such as the one discussed in §2.4.3)
using for each iteration the current value of the relevant parameters and thus
there is no issue of convergence. However, it is generally a good idea to provide
reasonable starting values for any non-observed random quantity and in this
case we do so by providing a value from a Uniform distribution in the interval
[0; 6000].

Finally, we run the jags function for 50000 iterations using the first 9500
for the burn-in and thinning of 81. This implies that the simulations saved to
produce the posterior inference are 1000. The results are saved in the object
m2 which is then printed to give the following output.

Inference for Bugs model at "modelNormal2.txt", fit using jags,
2 chains, each with 50000 iterations (first 9500 discarded),
n.thin = 81, n.sims = 1000 iterations saved

mu.vect sd.vect 2.5% 97.5% Rhat n.eff
alpha -2343.609 169.118 -2667.398 -2023.663 1.000 1000
beta 143.319  4.333 135.147 151.706 1.000 1000
sigma 455.764  9.928 436.599  476.001 1.002 1000
y.star 1677.155 460.291 743.366 2565.684 1.000 1000
deviance 16815.939  8.107 16802.916 16833.459 1.000 1000

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor
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Health economic evaluation in practice

5.1 Introduction

In this final chapter we present some examples of health economic evaluation.
In particular we focus on three “typical” cases; the first concerns the analysis
of individual level data, specifically from a RCT, in which a sample of individ-
uals is observed in terms of the relevant measures of cost and clinical outcome.
The second example focusses on the process of evidence synthesis, a situation
particularly relevant when individual data are not available. In these situa-
tions, the relevant random quantities can be estimated by the combination of
the available evidence, e.g. coming from published studies, or expert, opinions.
Within the Bayesian framework, this is very much linked to the development
of hierarchical models, which we briefly review before presenting the example.
Finally, we consider the analysis of Markov models, an increasingly popular
tool in health economic evaluation, which allow the simulation of a follow up
analysis on a “virtual” cohort of patients.

While the problems highlighted in each of the following sections can be
considered as typical of the situations considered in applied health economics,
they are far from representing an exhaustive set: in real applications, there
are countless subtleties and nuisances that need to be addressed specifically.
In particular in the Bayesian approach, this require a careful specification of
the model to be used, mainly in terms of the prior distributions, but also in
terms of the possible correlation levels among the observed and unobserved
random variables.

Nevertheless, we tackle some of the most relevant issues arising from the
analysis of health economic data, trying to point out possible solutions and
references where more detailed modelling strategies are presented. All the
examples are worked out starting from the description of the problem, the
specification of the Bayesian model and then the code used to run the MCMC
analysis and the post-processing necessary to derive the relevant health eco-
nomic quantities used to produce the decision-making process.
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FIGURE 5.7

Graphical representation of the evidence syntheses in the model. In the graph,
solid arrows indicate probabilistic links, while dashed arrows indicate logical
dependence. H studies are used to investigate the overall population prob-
ability of being infected by influenza, py. A similar structure combines the
information for the S studies investigating the effectiveness of NIs to derive
an odds ratio, which is combined with the estimation of py to provide an esti-
mation of py, the probability of influenza in the scenario in which prophylactic
treatment with NIs is made available

# the "healthy" adults population (t=0)
for(h in 1:H) {
x[h] ~ dbin(betalh], m[h])
logit(betalh]) <- gammalh]
gammal[h] ~ dnorm(mu.gamma, tau.gamma)

3

# Evidence synthesis for effectiveness of NIs (t=1 vs t=0)
for (s in 1:S) {
rofs] ~ dbin(piO[s],n0[s])
rils] ~ dbin(pi1[s],n1[s])
logit(piOLs]) <- alphals]
logit(pills]) <- alpha[s]+deltals]
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delta[s] ~ dnorm(mu.delta,tau.delta)
alphal[s] ~ dnorm(0,0.00001)
}

# Prior distributions
mu.delta ~ dnorm(0,0.00001)
mu.gamma ~ dnorm(0,0.00001)
sigma.delta ~ dunif(0,10)
tau.delta <- pow(sigma.delta,-2)
sigma.gamma ~ dunif(0,10)
tau.gamma <- pow(sigma.gamma,-2)

# Costs of influenza
c.inf ~ dnorm(mu.inf,tau.inf)

# Length of time to recovery when infected by influenza
1 ~ dlnorm(mu.1,tau.l)

# 0dds Ratio of influenza under treatment with NIs
rho <- exp(mu.delta)

# Estimated probability of influenza in "healthy adults” for t=0
p0 <- exp(mu.gamma)/(1+exp(mu.gamma))

# Estimated probability of influenza in "healthy adults” for t=1
pl <= (rhoxp0/(1-p0))/(1+rho*p0/(1-p0))

}

The data pre-processing required in R involves the definition of the variables
containing the observed data. We do this with the following code.

# Evidence synthesis on incidence of influenza
# in healthy adults (under t=0)

X <= m <- numeric()

x <- ¢(0,6,5,6,25,18,14,3,27)

m <- ¢(23,241,159,137,519,298,137,24,132)

H <- length(x)

# Evidence synthesis on effectiveness of NIs vs placebo
ro <- r1 <= n0 <- nl1 <- numeric()

ro <- c(34,40,9,19,6,34)

ri <- c(11,7,3,3,3,4)

n0 <- c(554,423,144,268,251,462)

n1 <- c(553,414,144,268,252,493)

S <- length(ro0)

# Data on costs
unit.cost.drug <- 2.4 # unit (daily) cost of NI
length.treat <- 6x%7 # 6 weeks course of treatment
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