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1Introdu
tion to health e
onomi
 evaluation
This 
hapter is written by Ra
hael M. Hunter (Department of Primary Care andPopulation Health, UCL) and Gianlu
a Baio
1.1 Introdu
tionIn re
ent years health e
onomi
s has be
ome an in
reasingly important dis
i-pline in medi
al resear
h, espe
ially with the transition from the paradigm ofeviden
e based medi
ine to that of translational resear
h (Berwi
k, 2005; Leanet al., 2008), whi
h aims at making basi
 resear
h appli
able in the 
ontextof real pra
ti
e, and under budget 
onstraints, in order to enhan
e patients'a

ess to optimal health 
are.Sin
e the 1970s, health 
are servi
es have undergone dramati
 
hanges:in
reasing demand for health 
are has generated an in
rease in the numberof available interventions, whi
h have sometimes been applied regardless on
onsiderations about the a
tual quality and the 
osts asso
iated.Consequently, de
ision-makers responsible for the provision of health 
areare in
reasingly fa
ing 
riti
al appraisal pro
esses of the modality in whi
hthey manage the available resour
es and they need to adjust the managementand the evaluation of the pro
esses used, with respe
t to some measures of
lini
al bene�t. The main reasons for the ne
essity of 
ontaining 
ost asso
i-ated with health 
are are essentially the following:� The progressive in
rease of the proportion of the �older� (above 65 years)population;� the in
rease of life expe
tan
y and of the in
iden
e of 
hroni
 and degen-erative pathologies;� the re�nement of diagnosti
 te
hniques;� the availability of innovative health te
hnologies and therapeuti
 toolsasso
iated with better 
lini
al out
omes but also with higher 
osts.In this perspe
tive, the systemati
 analysis of organised data provides afundamental 
ontribution to the identi�
ation of e
onomi
ally appropriate1
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onomi
sstrategies. This in turns has helped the integration between several 
lini
aland quantitative (e.g. statisti
s and e
onomi
s) dis
iplines, so mu
h that it
an be reasonably argued that health e
onomi
s is in fa
t a 
ombination ofmedi
al resear
h, epidemiology, statisti
s and e
onomi
s. Figure 1.1 shows this
on
ept graphi
ally and highlights the fa
t that health e
onomi
s en
ompassesmore than the mere 
ost evaluations.Epidemiology Experimentalstudies Cost analysisDe
isiontheory Healthe
onomi
sCausalinferen
e Generalisation and integration ofstatisti
s, epidemiology, e
onometri
sand �nan
ial analysis
⇓How mu
h does it 
ost totreat a patient withintervention t?
⇓� Finan
ial analysis� Budgeting⇓FIGURE 1.1Health e
onomi
 evaluation as the integration of di�erent dis
iplines. Costanalysis only represents one side of the storyIn this 
hapter we present some 
on
epts that are relevant to the de�nitionand des
ription of health e
onomi
 evaluations. In parti
ular we dis
uss the
hara
teristi
s of the two dimensions along whi
h e
onomi
 evaluations are
ondu
ted: 
osts and 
lini
al bene�ts. The latter 
an be de�ned in severaldi�erent ways, ea
h of whi
h gives rise to a spe
i�
 method of analysis. Wepresent the main ones in �1.6. Finally, we give a �rst introdu
tion to theproblem of 
omparative evaluation of two or more health interventions, whi
hwill be dis
ussed in more te
hni
al detail in 
hapters 3 and 5.

1.2 Health e
onomi
 evaluationHealth e
onomi
s 
an be formally des
ribed as the appli
ation of e
onomi
theory to health (de�ned as �a state of 
omplete physi
al, mental, and so
ialwell-being and not merely the absen
e of disease or in�rmity�; WHO, 2012)and health 
are, i.e. the diagnosis, treatment and prevention of disease and
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onomi
sTABLE 1.4An example of 
al
ulation of QALYs from utility s
ores. In the two treatmentgroups (t = 0, 1), the measurements 
onsist of the utility s
ore utj and the
osts ctj , for j = 0, . . . , 4 o

asionsBaseline 6 12 18 24 Totalmonths months months monthsTreatment group (t = 1)Utility s
ore 0.656 0.744 0.85 0.744 0.744QALYs 0.350 0.399 0.399 0.372 1.519Costs ¿2 300 ¿300 ¿300 ¿300 ¿3 200Control group (t = 0)Utility s
ore 0.656 0.656 0.656 0.656 0.744QALYs 0.328 0.328 0.328 0.350 1.334Costs ¿300 ¿300 ¿300 ¿300 ¿1 200Di�eren
ein QALYs (E[∆e])a 0.185in 
osts (E[∆c])a ¿2 000Cost per QALYa ¿10 811
a These quantities are de�ned in �1.7where

δj =
time between measurements j and (j − 1), in years1 yearFor example, the QALYs at 6 months (i.e. at time j = 1) for treatment

t = 0 are 
omputed as
q01 =

(
0.656 + 0.656

2

)(
0.5

1

)
= 0.164,sin
e the time between the two measurements, 6 months, is only half a year.Similarly, for t = 1 the 
omputation gives

q11 =

(
0.656 + 0.744

2

)(
0.5

1

)
= 0.35.Overall, for ea
h treatment the QALYs 
an be 
omputed by summing the qtjterms a
ross all the time periods. In the present example, the measurementsare repeated at every 6 month intervals and thus all values are added upover the 2 years. We de�ne the QALYs using the notation et (to indi
ate the�e�e
tiveness� of the treatment) as

et =

J∑

j=1

qtj .
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onomi
 evaluation 25This produ
es a result of 1.519 extra QALYs for the patient under t = 1 andonly 1.334 extra QALYs for the single patient under t = 0.Noti
e that, in more realisti
 
ases, instead of a single patient per group, wewould have a

ess to a sample of patients and therefore the relevant measureswould be the population average 
omputed a
ross all relevant individuals. �Ea
h of the three main types of e
onomi
 evaluation des
ribed above hasstrengths and weaknesses, and although ea
h has their own spe
i�
 
hara
-teristi
s most e
onomi
 evaluations generally 
ombine aspe
ts of ea
h. Morein depth information 
an be found in Drummond et al. (2005). NICE's De-
ision Support Unit also has extensive guidan
e to support te
hni
al ap-praisals http://www.nicedsu.org.uk/. Table 1.5 summarises the main dif-feren
es among them.TABLE 1.5A 
omparison of the 
hara
teristi
s of the main types of e
onomi
evaluation. Adapted from Meltzer and Teuts
h (1998)Type Costs in
ludeda Out
omesDire
t Indire
tCost-bene�t X X Monetary unitCost-e�e
tiveness X often Health out
omebCost-utility X rarely Utility measurec
a All future 
osts and bene�ts should be dis
ounted to the referen
e year (
fr. �1.5)
b For example: number of deaths averted
c For example: QALYs (
fr. �1.6.4)

1.7 Comparing health interventionsAs dis
ussed earlier, the purpose of e
onomi
 evaluations is to provide infor-mation to de
ision-makers about the 
osts and out
omes of health 
are optionsto help with resour
e allo
ation de
isions. Generally, e
onomi
 summaries are
omputed in the form of �
ost-per-out
ome� ratios.Moreover, in order to 
ompare the two interventions (t = 0, 1), we 
an de�nesuitable in
remental population summaries, su
h as the population averagein
rement in bene�ts, suitably measured as utilities (as in a CUA) or bymeans of hard 
lini
al out
omes (as in a CEA):E[∆e] = e1 − e0 (1.2)
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tion to Bayesian inferen
e
2.1 Introdu
tionIn the 
ontext of statisti
al problems, the frequentist (or empiri
al) interpre-tation of probability has played a predominant role throughout the twentieth
entury, espe
ially in the medi
al �eld. In this approa
h, probability is de�nedas the limiting frequen
y of o

urren
e in an in�nitely repeated experiment.The underlying assumption is that of a ��xed� 
on
ept of probability, whi
his unknown but 
an be theoreti
ally dis
losed by means of repeated trials,under the same experimental 
onditions. Moreover, probability is generallyregarded in 
lassi
al statisti
s as a physi
al property of the obje
t of theanalysis.However, although the frequentist approa
h still plays the role of the stan-dard in various applied areas, there are many other possible 
on
eptualisa-tions of probability 
hara
terising di�erent philosophies behind the problemof statisti
al inferen
e. Among these, an in
reasingly popular is the Bayesian(sometimes referred to as subje
tivist, in its 
ontemporary form), originatedby the posthumous work of Reverend Thomas Bayes (1763) and the inde-pendent 
ontributions by Pierre Simone Lapla
e (1774, 1812) � see Howie(2002), Senn (2003), Fienberg (2006) or Berts
h M
Grayne (2011) for a his-tori
al a

ount of Bayesian statisti
s.The main feature of this approa
h is that probability is interpreted as asubje
tive degree of belief in the o

urren
e of an event, representing theindividual level of un
ertainty in its a
tual realisation (
fr. de Finetti, 1974,probably the most 
omprehensive a

ount of subje
tive probability). One ofthe main impli
ations of subje
tivism is that there is no requirement thatone should be able to spe
ify, or even 
on
eive of some relevant sequen
e ofrepetitions of the event in question, as happens in the frequentist framework,with the advantage that �one-o�� type of events 
an be assessed 
onsistently(Dawid, 2005).In the Bayesian philosophy, the probability assigned to any event dependson the individual whose un
ertainty is being expressed and on the state ofba
kground information in light of whi
h this assessment is being made. Asany of these fa
tors 
hanges, so too might the probability. Consequently, underthe subje
tivist view, there is no assumption of a unique, 
orre
t (or �true�)29
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onomi
svalue for the probability of any un
ertain event. Rather, ea
h individual isentitled to their own subje
tive probability and a

ording to the eviden
ethat be
omes sequentially available, they tend to update their belief.The development of Bayesian applied resear
h has been limited probablybe
ause of the 
ommon per
eption among pra
titioners that Bayesian meth-ods are �more 
omplex�. In fa
t, in our opinion the apparent higher degreeof 
omplexity is more than 
ompensated by at least the two following 
onse-quen
es. First, Bayesian methods allow taking into a

ount, through a formaland 
onsistent model, all the available information, e.g. the results of previousstudies. Moreover, the inferential pro
ess is straightforward, as it is possibleto make probabilisti
 statements dire
tly on the quantities of interest (i.e.some unobservable feature of the pro
ess under study, typi
ally � but notne
essarily � represented by a set of parameters).In our opinion, Bayesian methods allow the pra
titioner to make the mostof the eviden
e: in just the situation of �repeated trials�, after observing theout
omes (e.g. su

esses and failures) of many past trials (and no other 
ol-lateral information), all subje
tivists will be drawn to an assessment of theprobability of obtaining a su

ess on the next event that is extremely 
loseto the observed proportion of su

esses so far. However, if past data are notsu�
iently extensive, it may reasonably be argued that there should indeedbe s
ope for interpersonal disagreement as to the impli
ations of the eviden
e.Therefore the Bayesian approa
h provides a more general framework for theproblem of statisti
al inferen
e.Justi�
ations for the use of Bayesian methods in health 
are evaluation havebeen detailed by Spiegelhalter et al. (2004), in terms of the formal quantita-tive in
lusion of external eviden
e in all aspe
ts of 
lini
al resear
h, in
ludingdesign, analysis, interpretation and poli
y-making. In parti
ular, the Bayesianapproa
h is valuable be
ause: i) it proves more �exible and 
apable of adapt-ing to ea
h unique situation; ii) it represents a more e�
ient inferential tool,making use of all available eviden
e and not restri
ting formal evaluationsto just the 
urrent data at hand; iii) it is parti
ularly e�e
tive in produ
ingpredi
tions and inputs for de
ision-making.Ja
kman (2009) suggests that performing statisti
al analysis by means ofBayesian methods also produ
es advantages from a pragmati
 point of view:be
ause of the wide availability of fast and 
heap 
omputing power, simulation-based pro
edures have allowed resear
hers to exploit more and more 
omplexstatisti
al models, espe
ially under the Bayesian paradigm. Examples in
ludethe possibility of 
omputing interval estimations in a straightforward way,without the need to rely on asymptoti
 arguments. This in turns has thepotential of rendering �hard statisti
al problems easier�.The a

ount of Bayesian statisti
s that is presented in this 
hapter is farfrom exhaustive � more 
omprehensive referen
es are O'Hagan (1994), Berry(1996), Bernardo and Smith (1999), Lindley (2000), Robert (2001), Lee (2004),Spiegelhalter et al. (2004), Gelman et al. (2004), Lindley (2006), Lan
aster(2008), Carlin and Louis (2009), Ja
kman (2009) and Christensen et al. (2011).
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(d)FIGURE 2.10Gibbs sampling simulation for the semi-
onjugated Normal model. The num-bers indi
ate the simulations sequen
e. Panels (a)-(d) show the situation after10, 30, 100 and 1000 iterations respe
tively. In this 
ase, already 100, or even30 simulations seem to 
over the relevant portion of the parametri
 spa
egeneri
 
omponent θk 
an be estimated as:V̂ar(θk | y) = S − 1

S
W (θk) +

1

S
B(θk),where W (θk) and B(θk) are the average within-
hain varian
e and the
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FIGURE 2.11Graphi
al assessment of 
onvergen
e for a Markov 
hain; in this 
ase two
hains are set up, starting from di�erent initial points. After the burn-in pe-riod, the two 
hains 
onverge to the stationary distributionbetween-
hains varian
e, and S is the length of the MCMC sample. Con-vergen
e is then monitored by assessing the potential s
ale redu
tion
R̂ =

√ V̂ar(θk | y)
W (θk)

, (2.19)whi
h represents the fa
tor by whi
h the s
ale of the 
urrent estimated poste-rior distribution of θk 
an be further redu
ed. If R̂ is large, then 
onsideringa longer MCMC run will potentially improve the inferen
e about the targetdistribution. As a rule of thumb, values of R̂ ≤ 1.1 are generally a

epted asindi
ative of su�
ient 
onvergen
e.2.4.7 MCMC auto
orrelationThe se
ond 
riti
al aspe
t of MCMC pro
edures is that the iterations pro-du
ed by a Markov 
hain are by de�nition 
orrelated, sin
e the 
urrent obser-vation depends on the previous one. Therefore, intuitively the a
tual numberof iterations stored to produ
e the inferen
e does not give in general the sameinformation provided by a sample of iid observations of the same size. In otherwords, the higher the auto
orrelation, the lower the degree of equivalen
e be-tween the MCMC output and a proper iid sample of the same size.



3Statisti
al 
ost-e�e
tiveness analysis
3.1 Introdu
tionIn the last ten years, health e
onomi
 evaluations have built on more advan
edstatisti
al de
ision-theoreti
 foundations, e�e
tively be
oming a bran
h of ap-plied statisti
s (Briggs et al., 2006;Willan and Briggs, 2006), in
reasingly oftenunder a Bayesian statisti
al approa
h (O'Hagan and Stevens, 2001; O'Haganet al., 2001; Parmigiani, 2002b; Spiegelhalter and Best, 2003; Spiegelhalteret al., 2004).As suggested by Spiegelhalter et al. (2004), this 
an be as
ribed to thefa
t that �the subje
tive interpretation of probability is essential, sin
e theexpressions of un
ertainty required for a de
ision analysis 
an rarely be basedpurely on empiri
al data�.Even though the pro
ess is, te
hni
ally, a simple appli
ation of standardde
ision-theoreti
 pre
epts (des
ribed for example in Lindley, 1985), healthe
onomi
s is 
ompli
ated by issues related to other important fa
tors that playa major role in real pra
ti
e medi
al de
ision making. Among these are thedi�
ulty of applying standard 
ost-e�e
tiveness te
hniques to the regulatorypro
ess (Baio and Russo, 2009), and the ne
essity of properly a

ounting forthe impa
t of un
ertainty in the inputs of de
ision pro
esses, an issue knownas sensitivity analysis (Parmigiani, 2002b; Saltelli et al., 2004). This latter inparti
ular is fundamental and is a required basi
 
omponent of any new drugapproval or reimbursement dossier in settings regulated by de
ision-makingbodies su
h as NICE in the UK (Claxton et al., 2005).In this 
hapter we �rst brie�y review the main 
hara
teristi
s of de
isiontheory. As in 
hapter 2 we pro
eed by introdu
ing the more abstra
t theory,in order to make the point that rational de
ision-making is e�e
ted by max-imising the expe
tation of a suitably de�ned utility fun
tion. This is used toquantify the value asso
iated with the un
ertain 
onsequen
es of a possibleintervention.Next we link the general methodology to the spe
i�
 problem fa
ed in healthe
onomi
 evaluation. This requires the spe
i�
ation of the problem in termsof a 
omposite response, a

ounting for both 
ost and bene�ts. We presenta relatively simple running example and, as in 
hapter 2, we swit
h betweenthe development of the theory and its appli
ation throughout. 75
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onomi
sWe then 
on
entrate on the development of sensitivity analysis te
hniques,whi
h as suggested earlier play a fundamental role in health e
onomi
 evalua-tions. Finally, we present some more advan
ed issues asso
iated with the mainassumptions on whi
h 
ost-e�e
tiveness or 
ost-utility analyses are based: inparti
ular, we 
onsider the problems of risk-aversion and the impa
t of market
onstraints (e.g. in the 
ase of regulatory pro
esses).
3.2 De
ision theory and expe
ted utility3.2.1 The problemHealth e
onomi
 evaluations are a typi
al problem of de
ision-making underun
ertainty. The main obje
tive is to evaluate 
omparatively the unknown
onsequen
es of a given health intervention against at least another. A suitableapproa
h to deal with this kind of problems is based on expe
ted utility theory,whi
h we brie�y review in this se
tion. More substantial referen
es are Savage(1954), Rai�a (1968), Lindley (1985), Berger (1985), Smith (1988), Bernardoand Smith (1999), Parmigiani (2002b), Jordaan (2005) and Smith (2011).Formally, a de
ision problem is 
hara
terised by some fundamental ele-ments: �rst, we 
onsider the possible de
isions (interventions, a
tions, treat-ments) t ∈ T , representing the alternatives available to the de
ision-maker.The sele
tion of ea
h possible intervention has some 
onsequen
es (out
omes)
o ∈ O, de�ned in general as fun
tions of suitable random quantities ω ∈ Ω.Every 
onsequen
e 
an be expressed as o = (ω, t), i.e. as the result of 
hoosingintervention t and the fa
t that a series of random quantities ω will obtain inthe future. The set of 
onsequen
es 
an be then represented as O = Ω× T .In addition to these fundamental quantities, the de
ision-maker needs tode�ne a s
heme of preferen
es among the many de
isions and 
onsequen
es;this relationship of preferen
e is generi
ally indi
ated by the symbol `�'. Thenotation t1 � t2 indi
ates that the random 
onsequen
es of a
tion t1 are notpreferred to those of a
tion t2. If t1 � t2 and simultaneously t2 � t1, the twoa
tions are indi�erent: t1 ∼ t2.The Bayesian de
ision pro
ess is based on a set of pres
riptive axioms. Theseare the 
riteria that should hold in order to make rational de
isions. The �rstset of axioms is related to the 
oheren
e of the de
ision making and involves:� 
omparability of the 
onsequen
es. This assumes that the de
ision-makeris 
apable of produ
ing some form of ranking of the possible out
omes, sothat there exist at least one pair of 
onsequen
es o1 and o2 for whi
h theformer is preferred to the latter;� transitivity of the preferen
es. This axiom implies that if the de
ision-maker has a preferen
e for a
tion t2 over a
tion t1 and for a
tion t3 over
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nint is the number of interventions being 
ompared∗ (
hapter 4 dis
usses howto run a Bayesian model, store and post-pro
ess its results using R).In this 
ase, nint = 2 sin
e we are 
omparing two interventions and weuse nsim = 500 simulations. The relevant health e
onomi
 quantities 
an beprodu
ed by running the fun
tion bcea, by means of the following 
ommands(
fr. �4.7 for a more detailed des
ription).

treats <- c("Old Chemotherapy","New Chemotherapy")

m <- bcea(e=e,c=c,ref=2,interventions=treats,Kmax=50000)The �rst 
ommand de�nes a ve
tor of labels to be asso
iated with ea
hintervention. Then we 
reate an obje
t m whi
h 
ontains the results of the
ost-e�e
tiveness analysis performed by bcea.This fun
tion takes several inputs: the most important ones are the twomatri
es e and c. Then we need to spe
ify the referen
e intervention: in this
ase we set the option ref=2 whi
h tells R that the se
ond 
olumn of e and
c 
ontains the values simulated for the intervention being 
ompared to thestandard treatment. If the option ref is left unspe
i�ed, R assumes that the�rst intervention is to be used as the intervention under analysis.Next we spe
ify that the interventions have labels de�ned in the ve
tor
treats; if the option interventions was left unspe
i�ed, R would 
onstru
tlabels in the form �Intervention 1�, . . ., �Intervention T� (with T = nint).The last option is related to the willingness-to-pay parameter and spe
i�esthe maximum value to be used for the analysis. In this 
ase, we set the option
Kmax=50000, whi
h instru
ts R to sele
t a grid of values between 0 and 50 000.The grid is built by 
onsidering a point every Kmax/500 in that interval. Ifnothing is spe
i�ed for Kmax, the fun
tion bcea automati
ally 
onsiders a valueof 50 000.All the results derived upon varying k in the grid are stored in the obje
t mand the ve
tor of values for k is saved in the element† m$k, whi
h in this 
ase
ontains the 501 values (0, 500, 1000, . . . , 50 000).Using the output produ
ed by bcea and saved in m, we 
an simplyobtain a graph of the 
ost-e�e
tiveness plane by entering the 
ommand
ceplane.plot(m,comparison=1,wtp=25000). The input of this fun
tion is theobje
t m and there are two possible options: the �rst one spe
i�es whi
h 
om-parison should be plotted. In this 
ase, there are only two interventions andtherefore there 
an only be one 
omparison. In general, there are nint − 1

∗Noti
e that, while spe
i�
ally designed for a Bayesian analysis, BCEA 
an also be run in afrequentist setting, provided that the two matri
es with simulations from the distributionsof e and c are available. In a non-Bayesian setting, these might be obtained, for example, byusing re-sampling algorithms su
h as the bootstrap (although, of 
ourse, in that instan
ethey would not represent the posterior distributions).
†In R, the elements 
ontained in an obje
t 
an be a

essed using the notation object$element.Thus, typing m$k prints the entire grid of values sele
ted for the willingness-to-pay de�nedin the obje
t m.
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omparisons. The se
ond option spe
i�es the value of the willingness-to-pay to use as referen
e. In this 
ase, we have 
hosen the default value of
k = 25 000, whi
h is usually re
ommended by NICE as the referen
e 
ost-per-QALY.

Cost effectiveness plane 
New Chemotherapy vs Old Chemotherapy

Effectiveness differential

C
os

t d
iff

er
en

tia
l

−100 −50 0 50 100 150 200

−
50

00
00

0
50

00
00

10
00

00
0

• ICER=6698.11

k = 25000

FIGURE 3.1Cost-e�e
tiveness plane for the 
hemotherapy example. The dots representthe simulations from the posterior distribution of (∆e,∆c), while the shadedpart of the graph shows the �sustainability area�, i.e. the portion of the planein whi
h the points are below the willingness-to-pay threshold, whi
h is set to
25 000 in this 
aseThe result is depi
ted in Figure 3.1, in whi
h the dots are the simulationsfrom the posterior distribution of (∆e,∆c). The graph also shows the lineobtained in 
orresponden
e of the set value of k. The shaded area below theline represent the portion of the plane where the simulated values are belowthat threshold and therefore it 
an be 
onsidered as a �sustainability area�.The red dot represents the ICER (
fr. �1.7). As in this 
ase it lies in thesustainability area, we 
an 
on
lude that, at the willingness-to-pay thresholdsele
ted, the new drug is a 
ost-e�e
tive alternative with respe
t to the statusquo. With respe
t to Figure 1.6, the 
urrent analysis also presents a quanti�-
ation of the un
ertainty underlying the point estimation represented by theICER, be
ause it is based on the entire distribution of (∆e,∆c), rather thanjust on its expe
tations.A more 
omprehensive analysis is provided by Figure 3.2, whi
h is produ
ed



4Bayesian analysis in pra
ti
e
4.1 Introdu
tionAs dis
ussed in 
hapter 2, if it is possible to sample from the full 
onditionaldistributions, Gibbs sampling algorithms 
an be programmed in a relativelyeasy way. However, in most pra
ti
al situations, the required 
onditional dis-tributions are not analyti
ally tra
table and therefore it is ne
essary to ap-proximate them (e.g. by means of algorithms su
h as Metropolis-Hastings orsli
e sampling) before Gibbs sampling 
an be performed.The most popular software that allows the semi-automatisation of MCMCpro
edures is BUGS, and parti
ularly its MS Windows in
arnations WinBUGS(Spiegelhalter et al., 2002) and OpenBUGS (Lunn et al., 2009), whose widespreaduse has arguably 
ontributed to the establishment of applied Bayesian statis-ti
s in the last twenty years.The a
ronym BUGS stands for Bayesian analysis Using Gibbs Sampling andthe program essentially 
onsists of two main parts. The �rst is a parser, whi
hinspe
ts the set of de
larations provided by the user to de�ne the statisti
almodel (in terms of data and parameter distributions and, possibly, other de-terministi
 relationships among the variables in the problem). In parti
ular,the parser 
odi�es the statisti
al model in terms of the 
orresponding DAG,trying to make use of the 
onditional independen
e relationships implied bythe model assumed by the user. These generally simplify the 
omputationssin
e the full 
onditional distribution for any (set of) node(s) only involvesa lo
al 
omputation on the graph. Thus, only a small portion of the wholemodel needs to be 
onsidered at any given time (Lunn et al., 2009).The se
ond part is an expert system that is used to dedu
e the form of thefull 
onditional distributions generated by the problem. When possible, BUGStries to exploit 
onjuga
y to speed up the pro
ess; when this is not feasible,suitable 
omplementary sampling algorithms are applied together with theGibbs sampling to obtain the required MCMC estimation.While both BUGS and WinBUGS 
an run as stand-alone software, in re
entyears several programs have been written to interfa
e them with standardstatisti
al software su
h as R, Matlab, Stata or SAS, whi
h makes the pro
essof data analysis easier (we dis
uss this aspe
t later).Despite their wide su

ess, WinBUGS or BUGS are not the only possible al-115
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ti
e 137baby, knowing that the mother has gone into labour at exa
tly that estimatedgestational age), or a hypotheti
al value (e.g. if the do
tor wants to plandi�erent 
are strategies for a mother who has not gone into labour yet).We 
an then run the model using the following 
ode.
X.star <- 28

dataJags2 <- list("N","y","X","k","X.star")

filein <- "modelNormal2.txt"

params2 <- c("alpha","beta","sigma","y.star")

inits <- function(){

list(alpha=rnorm(1),beta=rnorm(1),

lsigma=rnorm(1),y.star=runif(1,0,6000))

}

m2 <- jags(dataJags2, inits, params2, model.file=filein,

n.chains=2,n.iter=50000,n.burnin=4500,n.thin=91,DIC=TRUE)

print(m2,digits=3,intervals=c(0.025, 0.975))After we have set the value for the new estimated gestational age X.star, werede�ne the data list to in
lude this node as well. Then we rede�ne the nameof the model �le to point JAGS towards the new spe
i�
ation and the obje
t
ontaining the parameters to be monitored so that the predi
tive distributionof y.star is in
luded.The next modi�
ation to the previous R 
ode is in the inits fun
tion,where we set an initial value also for the node y.star. Te
hni
ally, this is notstri
tly ne
essary; in fa
t, JAGS/BUGS will estimate the predi
tive distributione�e
tively using a simple MC approa
h (su
h as the one dis
ussed in �2.4.3)using for ea
h iteration the 
urrent value of the relevant parameters and thusthere is no issue of 
onvergen
e. However, it is generally a good idea to providereasonable starting values for any non-observed random quantity and in this
ase we do so by providing a value from a Uniform distribution in the interval
[0; 6000].Finally, we run the jags fun
tion for 50000 iterations using the �rst 9500for the burn-in and thinning of 81. This implies that the simulations saved toprodu
e the posterior inferen
e are 1000. The results are saved in the obje
t
m2 whi
h is then printed to give the following output.

Inference for Bugs model at "modelNormal2.txt", fit using jags,

2 chains, each with 50000 iterations (first 9500 discarded),

n.thin = 81, n.sims = 1000 iterations saved

mu.vect sd.vect 2.5% 97.5% Rhat n.eff

alpha -2343.609 169.118 -2667.398 -2023.663 1.000 1000
beta 143.319 4.333 135.147 151.706 1.000 1000

sigma 455.764 9.928 436.599 476.001 1.002 1000

y.star 1677.155 460.291 743.366 2565.684 1.000 1000

deviance 16815.939 8.107 16802.916 16833.459 1.000 1000

For each parameter, n.eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor



5Health e
onomi
 evaluation in pra
ti
e
5.1 Introdu
tionIn this �nal 
hapter we present some examples of health e
onomi
 evaluation.In parti
ular we fo
us on three �typi
al� 
ases; the �rst 
on
erns the analysisof individual level data, spe
i�
ally from a RCT, in whi
h a sample of individ-uals is observed in terms of the relevant measures of 
ost and 
lini
al out
ome.The se
ond example fo
usses on the pro
ess of eviden
e synthesis, a situationparti
ularly relevant when individual data are not available. In these situa-tions, the relevant random quantities 
an be estimated by the 
ombination ofthe available eviden
e, e.g. 
oming from published studies, or expert opinions.Within the Bayesian framework, this is very mu
h linked to the developmentof hierar
hi
al models, whi
h we brie�y review before presenting the example.Finally, we 
onsider the analysis of Markov models, an in
reasingly populartool in health e
onomi
 evaluation, whi
h allow the simulation of a follow upanalysis on a �virtual� 
ohort of patients.While the problems highlighted in ea
h of the following se
tions 
an be
onsidered as typi
al of the situations 
onsidered in applied health e
onomi
s,they are far from representing an exhaustive set: in real appli
ations, thereare 
ountless subtleties and nuisan
es that need to be addressed spe
i�
ally.In parti
ular in the Bayesian approa
h, this require a 
areful spe
i�
ation ofthe model to be used, mainly in terms of the prior distributions, but also interms of the possible 
orrelation levels among the observed and unobservedrandom variables.Nevertheless, we ta
kle some of the most relevant issues arising from theanalysis of health e
onomi
 data, trying to point out possible solutions andreferen
es where more detailed modelling strategies are presented. All theexamples are worked out starting from the des
ription of the problem, thespe
i�
ation of the Bayesian model and then the 
ode used to run the MCMCanalysis and the post-pro
essing ne
essary to derive the relevant health e
o-nomi
 quantities used to produ
e the de
ision-making pro
ess.

153
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al representation of the eviden
e syntheses in the model. In the graph,solid arrows indi
ate probabilisti
 links, while dashed arrows indi
ate logi
aldependen
e. H studies are used to investigate the overall population prob-ability of being infe
ted by in�uenza, p0. A similar stru
ture 
ombines theinformation for the S studies investigating the e�e
tiveness of NIs to derivean odds ratio, whi
h is 
ombined with the estimation of p0 to provide an esti-mation of p1, the probability of in�uenza in the s
enario in whi
h prophyla
ti
treatment with NIs is made available
# the "healthy" adults population (t=0)

for(h in 1:H) {

x[h] ~ dbin(beta[h], m[h])

logit(beta[h]) <- gamma[h]

gamma[h] ~ dnorm(mu.gamma,tau.gamma)

}

# Evidence synthesis for effectiveness of NIs (t=1 vs t=0)

for (s in 1:S) {

r0[s] ~ dbin(pi0[s],n0[s])

r1[s] ~ dbin(pi1[s],n1[s])

logit(pi0[s]) <- alpha[s]

logit(pi1[s]) <- alpha[s]+delta[s]
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delta[s] ~ dnorm(mu.delta,tau.delta)

alpha[s] ~ dnorm(0,0.00001)

}

# Prior distributions

mu.delta ~ dnorm(0,0.00001)

mu.gamma ~ dnorm(0,0.00001)

sigma.delta ~ dunif(0,10)

tau.delta <- pow(sigma.delta,-2)

sigma.gamma ~ dunif(0,10)

tau.gamma <- pow(sigma.gamma,-2)

# Costs of influenza

c.inf ~ dnorm(mu.inf,tau.inf)

# Length of time to recovery when infected by influenza

l ~ dlnorm(mu.l,tau.l)

# Odds Ratio of influenza under treatment with NIs

rho <- exp(mu.delta)

# Estimated probability of influenza in "healthy adults" for t=0

p0 <- exp(mu.gamma)/(1+exp(mu.gamma))

# Estimated probability of influenza in "healthy adults" for t=1

p1 <- (rho*p0/(1-p0))/(1+rho*p0/(1-p0))

}The data pre-pro
essing required in R involves the de�nition of the variables
ontaining the observed data. We do this with the following 
ode.
# Evidence synthesis on incidence of influenza

# in healthy adults (under t=0)

x <- m <- numeric()

x <- c(0,6,5,6,25,18,14,3,27)

m <- c(23,241,159,137,519,298,137,24,132)

H <- length(x)

# Evidence synthesis on effectiveness of NIs vs placebo

r0 <- r1 <- n0 <- n1 <- numeric()

r0 <- c(34,40,9,19,6,34)

r1 <- c(11,7,3,3,3,4)

n0 <- c(554,423,144,268,251,462)

n1 <- c(553,414,144,268,252,493)

S <- length(r0)

# Data on costs

unit.cost.drug <- 2.4 # unit (daily) cost of NI

length.treat <- 6*7 # 6 weeks course of treatment
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